Properties

Label 4-72e3-1.1-c1e2-0-18
Degree $4$
Conductor $373248$
Sign $-1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·11-s + 2·13-s − 4·23-s − 2·25-s + 2·37-s + 4·47-s − 49-s − 12·59-s + 2·61-s − 16·71-s + 6·73-s + 8·83-s + 6·97-s + 4·107-s − 12·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s − 8·143-s + 149-s + 151-s + 157-s + 163-s + 167-s − 19·169-s + ⋯
L(s)  = 1  − 1.20·11-s + 0.554·13-s − 0.834·23-s − 2/5·25-s + 0.328·37-s + 0.583·47-s − 1/7·49-s − 1.56·59-s + 0.256·61-s − 1.89·71-s + 0.702·73-s + 0.878·83-s + 0.609·97-s + 0.386·107-s − 1.14·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.668·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.46·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.5.a_c
7$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \) 2.7.a_b
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.11.e_ba
13$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.13.ac_x
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \) 2.17.a_k
19$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \) 2.19.a_f
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.23.e_bi
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \) 2.29.a_bm
31$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \) 2.31.a_abi
37$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.37.ac_ct
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \) 2.41.a_be
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.43.a_w
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.47.ae_de
53$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \) 2.53.a_cc
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.59.m_fy
61$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.61.ac_dj
67$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \) 2.67.a_ad
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.71.q_fm
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.73.ag_dn
79$C_2^2$ \( 1 + 65 T^{2} + p^{2} T^{4} \) 2.79.a_cn
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.83.ai_eo
89$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \) 2.89.a_cg
97$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.97.ag_hf
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.464639652393598091311303554900, −7.80788544033807653573099496487, −7.77705969486883574878210278940, −7.17126590819268759634204734981, −6.52642986817231744153585651812, −6.02170546654244417151593718984, −5.73888334304458189037337394869, −5.06570120431148529766639900656, −4.64398980024366333510173835416, −3.97910045930276946287639673735, −3.46610568892311162104355405137, −2.74188331851136651944863593602, −2.20687676950370708454942828485, −1.31061700847784844610116455361, 0, 1.31061700847784844610116455361, 2.20687676950370708454942828485, 2.74188331851136651944863593602, 3.46610568892311162104355405137, 3.97910045930276946287639673735, 4.64398980024366333510173835416, 5.06570120431148529766639900656, 5.73888334304458189037337394869, 6.02170546654244417151593718984, 6.52642986817231744153585651812, 7.17126590819268759634204734981, 7.77705969486883574878210278940, 7.80788544033807653573099496487, 8.464639652393598091311303554900

Graph of the $Z$-function along the critical line