L(s) = 1 | − 4·11-s + 2·13-s − 4·23-s − 2·25-s + 2·37-s + 4·47-s − 49-s − 12·59-s + 2·61-s − 16·71-s + 6·73-s + 8·83-s + 6·97-s + 4·107-s − 12·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s − 8·143-s + 149-s + 151-s + 157-s + 163-s + 167-s − 19·169-s + ⋯ |
L(s) = 1 | − 1.20·11-s + 0.554·13-s − 0.834·23-s − 2/5·25-s + 0.328·37-s + 0.583·47-s − 1/7·49-s − 1.56·59-s + 0.256·61-s − 1.89·71-s + 0.702·73-s + 0.878·83-s + 0.609·97-s + 0.386·107-s − 1.14·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.668·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.46·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.464639652393598091311303554900, −7.80788544033807653573099496487, −7.77705969486883574878210278940, −7.17126590819268759634204734981, −6.52642986817231744153585651812, −6.02170546654244417151593718984, −5.73888334304458189037337394869, −5.06570120431148529766639900656, −4.64398980024366333510173835416, −3.97910045930276946287639673735, −3.46610568892311162104355405137, −2.74188331851136651944863593602, −2.20687676950370708454942828485, −1.31061700847784844610116455361, 0,
1.31061700847784844610116455361, 2.20687676950370708454942828485, 2.74188331851136651944863593602, 3.46610568892311162104355405137, 3.97910045930276946287639673735, 4.64398980024366333510173835416, 5.06570120431148529766639900656, 5.73888334304458189037337394869, 6.02170546654244417151593718984, 6.52642986817231744153585651812, 7.17126590819268759634204734981, 7.77705969486883574878210278940, 7.80788544033807653573099496487, 8.464639652393598091311303554900