Properties

Label 2.73.ag_dn
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $( 1 - 11 x + 73 x^{2} )( 1 + 5 x + 73 x^{2} )$
  $1 - 6 x + 91 x^{2} - 438 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.277387524567$, $\pm0.594521390912$
Angle rank:  $2$ (numerical)
Jacobians:  $240$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4977$ $29190105$ $151375972608$ $806631918093225$ $4297879568247546897$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $68$ $5476$ $389126$ $28404292$ $2073193988$ $151333679374$ $11047386174116$ $806460088961668$ $58871586922279958$ $4297625828761892836$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The isogeny class factors as 1.73.al $\times$ 1.73.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.aq_ht$2$(not in LMFDB)
2.73.g_dn$2$(not in LMFDB)
2.73.q_ht$2$(not in LMFDB)