Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 73 x^{2} )( 1 + 5 x + 73 x^{2} )$ |
$1 - 6 x + 91 x^{2} - 438 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.277387524567$, $\pm0.594521390912$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $240$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4977$ | $29190105$ | $151375972608$ | $806631918093225$ | $4297879568247546897$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $5476$ | $389126$ | $28404292$ | $2073193988$ | $151333679374$ | $11047386174116$ | $806460088961668$ | $58871586922279958$ | $4297625828761892836$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):
- $y^2=51 x^6+33 x^5+x^4+59 x^3+69 x^2+57 x+1$
- $y^2=48 x^6+16 x^5+13 x^4+51 x^3+10 x^2+24 x+12$
- $y^2=55 x^6+56 x^5+5 x^4+13 x^3+28 x^2+42 x+17$
- $y^2=42 x^6+18 x^5+19 x^4+51 x^3+19 x^2+39 x+16$
- $y^2=17 x^6+58 x^5+26 x^4+25 x^3+55 x^2+17 x+6$
- $y^2=7 x^6+21 x^5+20 x^4+50 x^3+19 x^2+7 x+44$
- $y^2=8 x^6+20 x^5+20 x^4+8 x^3+14 x^2+20 x+70$
- $y^2=62 x^6+19 x^5+8 x^4+61 x^3+53 x^2+20 x+62$
- $y^2=x^6+31 x^5+8 x^4+43 x^3+29 x^2+66 x+58$
- $y^2=18 x^6+47 x^5+20 x^4+27 x^3+x^2+12 x+56$
- $y^2=4 x^6+58 x^4+24 x^3+27 x^2+37 x+54$
- $y^2=66 x^6+51 x^5+48 x^4+22 x^3+32 x^2+64 x+62$
- $y^2=23 x^6+12 x^5+47 x^4+x^3+7 x^2+41 x+58$
- $y^2=61 x^6+34 x^5+42 x^4+53 x^3+12 x^2+54 x+49$
- $y^2=36 x^6+27 x^5+43 x^4+30 x^3+65 x+46$
- $y^2=66 x^6+63 x^5+51 x^4+72 x^3+29 x^2+15 x+63$
- $y^2=50 x^6+27 x^5+34 x^4+2 x^3+58 x^2+35 x+53$
- $y^2=39 x^6+45 x^5+49 x^4+56 x^3+34 x^2+61 x+11$
- $y^2=39 x^6+69 x^5+13 x^4+64 x^3+2 x^2+23 x+71$
- $y^2=8 x^6+54 x^5+18 x^4+56 x^3+20 x^2+71 x+5$
- and 220 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.al $\times$ 1.73.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.aq_ht | $2$ | (not in LMFDB) |
2.73.g_dn | $2$ | (not in LMFDB) |
2.73.q_ht | $2$ | (not in LMFDB) |