Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 23 x^{2} )( 1 + 6 x + 23 x^{2} )$ |
| $1 + 4 x + 34 x^{2} + 92 x^{3} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.433137181604$, $\pm0.715122617226$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $64$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $660$ | $308880$ | $147207060$ | $78381388800$ | $41390511561300$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $28$ | $582$ | $12100$ | $280094$ | $6430748$ | $148028454$ | $3405058244$ | $78310688446$ | $1801149578140$ | $41426516155782$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=4 x^6+19 x^5+20 x^4+6 x^3+x^2+15 x+18$
- $y^2=14 x^6+3 x^5+12 x^4+15 x^3+13 x^2+9 x+18$
- $y^2=5 x^6+10 x^5+20 x^4+20 x^3+13 x^2+22 x+9$
- $y^2=16 x^6+16 x^5+12 x^4+4 x^3+8 x^2+19 x+18$
- $y^2=9 x^6+22 x^5+15 x^4+6 x^3+15 x^2+22 x+9$
- $y^2=20 x^6+9 x^5+7 x^4+6 x^3+22 x^2+x+15$
- $y^2=6 x^6+2 x^5+5 x^4+18 x^3+15 x^2+x+8$
- $y^2=3 x^6+21 x^4+5 x^3+15 x^2+14 x+1$
- $y^2=x^6+4 x^5+7 x^4+x^3+7 x^2+4 x+1$
- $y^2=21 x^6+5 x^5+17 x^4+15 x^3+17 x^2+5 x+21$
- $y^2=x^6+21 x^5+21 x^4+3 x^3+8 x^2+5 x+13$
- $y^2=x^6+7 x^5+15 x^4+5 x^3+19 x^2+18 x+5$
- $y^2=21 x^6+20 x^5+18 x^4+16 x^3+4 x^2+4 x+22$
- $y^2=9 x^6+14 x^5+11 x^4+22 x^3+11 x^2+14 x+9$
- $y^2=9 x^6+2 x^5+17 x^4+2 x^3+11 x^2+8 x+18$
- $y^2=8 x^6+22 x^5+22 x^4+17 x^3+10 x^2+15 x+4$
- $y^2=6 x^6+2 x^5+11 x^4+20 x^3+8 x^2+5 x+5$
- $y^2=4 x^6+22 x^5+x^4+12 x^3+x^2+22 x+10$
- $y^2=15 x^6+11 x^5+8 x^3+8 x^2+5 x+18$
- $y^2=19 x^6+7 x^5+16 x^4+15 x^3+4 x^2+x+3$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.ac $\times$ 1.23.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.ai_cg | $2$ | (not in LMFDB) |
| 2.23.ae_bi | $2$ | (not in LMFDB) |
| 2.23.i_cg | $2$ | (not in LMFDB) |