L(s) = 1 | − 3-s − 2·7-s + 9-s + 2·13-s + 6·19-s + 2·21-s + 2·25-s − 27-s + 4·31-s − 8·37-s − 2·39-s − 12·43-s − 10·49-s − 6·57-s − 20·61-s − 2·63-s + 10·67-s + 12·73-s − 2·75-s − 18·79-s + 81-s − 4·91-s − 4·93-s − 8·97-s + 2·103-s − 10·109-s + 8·111-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.554·13-s + 1.37·19-s + 0.436·21-s + 2/5·25-s − 0.192·27-s + 0.718·31-s − 1.31·37-s − 0.320·39-s − 1.82·43-s − 1.42·49-s − 0.794·57-s − 2.56·61-s − 0.251·63-s + 1.22·67-s + 1.40·73-s − 0.230·75-s − 2.02·79-s + 1/9·81-s − 0.419·91-s − 0.414·93-s − 0.812·97-s + 0.197·103-s − 0.957·109-s + 0.759·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.108968848734086284000726693486, −7.78499932365386369687261683110, −7.01844215709262667167203378115, −6.82956747584740142949100046518, −6.41897478231044336642206137228, −5.86027847453465385804328226204, −5.44508730156572028295813416190, −4.91240861006383619654100874468, −4.53134186539358396795441458009, −3.70758402662339169747033540804, −3.26893534629780376248160237436, −2.89839453673235949497987425818, −1.80666670928817171290268325841, −1.16736969930187908758058462808, 0,
1.16736969930187908758058462808, 1.80666670928817171290268325841, 2.89839453673235949497987425818, 3.26893534629780376248160237436, 3.70758402662339169747033540804, 4.53134186539358396795441458009, 4.91240861006383619654100874468, 5.44508730156572028295813416190, 5.86027847453465385804328226204, 6.41897478231044336642206137228, 6.82956747584740142949100046518, 7.01844215709262667167203378115, 7.78499932365386369687261683110, 8.108968848734086284000726693486