Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 67 x^{2} )( 1 + 2 x + 67 x^{2} )$ |
$1 - 10 x + 110 x^{2} - 670 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.238111713333$, $\pm0.538985133153$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $336$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3920$ | $20697600$ | $90545935760$ | $406086912000000$ | $1822976805196307600$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $4610$ | $301054$ | $20152078$ | $1350228058$ | $90458962130$ | $6060705419134$ | $406067616584158$ | $27206534393481658$ | $1822837804482414050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=11 x^6+41 x^5+59 x^4+46 x^3+13 x^2+64 x+32$
- $y^2=66 x^6+57 x^5+24 x^4+10 x^3+64 x^2+29 x+12$
- $y^2=62 x^6+26 x^5+23 x^4+19 x^3+35 x^2+3 x+52$
- $y^2=49 x^6+17 x^5+8 x^3+58 x^2+9 x+48$
- $y^2=3 x^6+54 x^5+55 x^4+58 x^3+59 x+25$
- $y^2=51 x^6+25 x^5+6 x^4+6 x^3+43 x^2+38 x+27$
- $y^2=38 x^6+41 x^5+11 x^4+21 x^3+39 x^2+35 x+2$
- $y^2=56 x^6+25 x^5+17 x^4+22 x^3+17 x^2+25 x+56$
- $y^2=6 x^6+15 x^5+41 x^4+62 x^3+62 x^2+65 x+8$
- $y^2=24 x^6+25 x^5+47 x^4+65 x^3+9 x^2+14 x+15$
- $y^2=49 x^6+51 x^5+38 x^4+9 x^3+38 x^2+51 x+49$
- $y^2=60 x^6+4 x^5+23 x^4+41 x^3+58 x^2+30 x+4$
- $y^2=65 x^5+18 x^4+10 x^3+46 x^2+15 x+24$
- $y^2=17 x^6+37 x^5+36 x^4+47 x^3+23 x^2+19 x+27$
- $y^2=53 x^6+30 x^5+22 x^4+43 x^3+32 x^2+60 x+3$
- $y^2=19 x^6+55 x^5+26 x^4+65 x^3+13 x^2+32 x+13$
- $y^2=41 x^6+30 x^5+12 x^4+15 x^3+25 x^2+7 x+58$
- $y^2=59 x^6+59 x^5+21 x^4+31 x^3+11 x^2+5 x+9$
- $y^2=22 x^6+50 x^5+63 x^4+53 x^3+66 x^2+21 x+42$
- $y^2=7 x^6+25 x^5+33 x^4+40 x^3+33 x^2+25 x+7$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.am $\times$ 1.67.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ao_gc | $2$ | (not in LMFDB) |
2.67.k_eg | $2$ | (not in LMFDB) |
2.67.o_gc | $2$ | (not in LMFDB) |