Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 22 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.220152392612$, $\pm0.779847607388$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-6}, \sqrt{35})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $220$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3460$ | $11971600$ | $42180752740$ | $146987496345600$ | $511116752147906500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3438$ | $205380$ | $12130318$ | $714924300$ | $42180971838$ | $2488651484820$ | $146830402144798$ | $8662995818654940$ | $511116750995171598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 220 curves (of which all are hyperelliptic):
- $y^2=10 x^6+25 x^5+4 x^4+12 x^3+41 x+20$
- $y^2=20 x^6+50 x^5+8 x^4+24 x^3+23 x+40$
- $y^2=22 x^6+18 x^5+58 x^4+16 x^3+5 x^2+31 x+36$
- $y^2=46 x^6+43 x^5+41 x^4+24 x^3+48 x^2+8 x+43$
- $y^2=33 x^6+27 x^5+23 x^4+48 x^3+37 x^2+16 x+27$
- $y^2=25 x^6+37 x^5+33 x^4+18 x^3+48 x^2+32 x+39$
- $y^2=50 x^6+15 x^5+7 x^4+36 x^3+37 x^2+5 x+19$
- $y^2=27 x^6+3 x^5+33 x^4+54 x^3+37 x^2+21 x+54$
- $y^2=54 x^6+6 x^5+7 x^4+49 x^3+15 x^2+42 x+49$
- $y^2=13 x^6+38 x^5+14 x^4+7 x^3+x^2+2 x+26$
- $y^2=18 x^6+56 x^5+48 x^4+36 x^3+13 x^2+8 x+46$
- $y^2=29 x^6+19 x^5+8 x^4+47 x^3+18 x^2+7 x+54$
- $y^2=58 x^6+38 x^5+16 x^4+35 x^3+36 x^2+14 x+49$
- $y^2=38 x^6+27 x^5+12 x^4+24 x^3+2 x^2+45 x+4$
- $y^2=45 x^6+11 x^5+42 x^4+28 x^3+24 x^2+57 x+32$
- $y^2=31 x^6+22 x^5+25 x^4+56 x^3+48 x^2+55 x+5$
- $y^2=35 x^6+51 x^5+43 x^4+55 x^3+21 x^2+36 x+50$
- $y^2=31 x^6+19 x^5+25 x^4+17 x^3+58 x^2+24 x+18$
- $y^2=3 x^6+38 x^5+50 x^4+34 x^3+57 x^2+48 x+36$
- $y^2=37 x^6+20 x^5+22 x^4+40 x^3+46 x^2+33 x+54$
- and 200 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}, \sqrt{35})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.aw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-210}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.a_w | $4$ | (not in LMFDB) |