L(s) = 1 | − 2·3-s + 4-s − 8·5-s + 3·9-s + 5·11-s − 2·12-s + 16·15-s + 16-s − 8·20-s + 18·23-s + 38·25-s − 4·27-s − 4·31-s − 10·33-s + 3·36-s + 2·37-s + 5·44-s − 24·45-s − 20·47-s − 2·48-s − 5·49-s + 6·53-s − 40·55-s − 8·59-s + 16·60-s + 64-s + 12·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s − 3.57·5-s + 9-s + 1.50·11-s − 0.577·12-s + 4.13·15-s + 1/4·16-s − 1.78·20-s + 3.75·23-s + 38/5·25-s − 0.769·27-s − 0.718·31-s − 1.74·33-s + 1/2·36-s + 0.328·37-s + 0.753·44-s − 3.57·45-s − 2.91·47-s − 0.288·48-s − 5/7·49-s + 0.824·53-s − 5.39·55-s − 1.04·59-s + 2.06·60-s + 1/8·64-s + 1.46·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5453686450\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5453686450\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.32323094324505148733163418443, −6.89342426467112599170590939233, −6.50722784968318237501983344506, −6.42380409964038574403615594445, −5.49573142340352003561742069236, −4.91417472073856393922961060427, −4.69516264772634405387664054544, −4.54153848033705011488514608460, −3.69413280585934281517510849684, −3.62249531038962811542206939005, −3.25642768509079454232693835647, −2.71542071497926879083795377763, −1.31585175497619613956901167226, −1.13658449571290171220917545956, −0.34224393506567788777553888401,
0.34224393506567788777553888401, 1.13658449571290171220917545956, 1.31585175497619613956901167226, 2.71542071497926879083795377763, 3.25642768509079454232693835647, 3.62249531038962811542206939005, 3.69413280585934281517510849684, 4.54153848033705011488514608460, 4.69516264772634405387664054544, 4.91417472073856393922961060427, 5.49573142340352003561742069236, 6.42380409964038574403615594445, 6.50722784968318237501983344506, 6.89342426467112599170590939233, 7.32323094324505148733163418443