Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 19 x^{2} )( 1 + 7 x + 19 x^{2} )$ |
$1 - 11 x^{2} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.203259864187$, $\pm0.796740135813$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $22$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $351$ | $123201$ | $47056464$ | $17140831929$ | $6131061331551$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $340$ | $6860$ | $131524$ | $2476100$ | $47067046$ | $893871740$ | $16983361924$ | $322687697780$ | $6131056405300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=18 x^6+12 x^5+2 x^4+10 x^3+11 x^2+2 x+7$
- $y^2=17 x^6+10 x^5+16 x^4+x^3+12 x^2+10 x+7$
- $y^2=15 x^6+x^5+13 x^4+2 x^3+5 x^2+x+14$
- $y^2=8 x^6+7 x^5+6 x^4+11 x^3+18 x^2+x+2$
- $y^2=16 x^6+14 x^5+12 x^4+3 x^3+17 x^2+2 x+4$
- $y^2=18 x^6+7 x^5+17 x^3+13 x^2+15 x+13$
- $y^2=17 x^6+14 x^5+15 x^3+7 x^2+11 x+7$
- $y^2=9 x^6+5 x^5+5 x^4+5 x^3+8 x^2+9 x+13$
- $y^2=18 x^6+12 x^5+17 x^4+16 x^3+5 x^2+11 x+4$
- $y^2=17 x^6+5 x^5+15 x^4+13 x^3+10 x^2+3 x+8$
- $y^2=11 x^6+8 x^4+9 x^3+6 x^2+11 x+2$
- $y^2=3 x^6+16 x^4+18 x^3+12 x^2+3 x+4$
- $y^2=x^6+x^3+18$
- $y^2=11 x^6+2 x^5+18 x^4+12 x^3+12 x^2+x+9$
- $y^2=3 x^6+4 x^5+17 x^4+5 x^3+5 x^2+2 x+18$
- $y^2=11 x^6+10 x^5+13 x^4+9 x^3+15 x^2+15 x+11$
- $y^2=3 x^6+x^5+7 x^4+18 x^3+11 x^2+11 x+3$
- $y^2=x^6+8 x^5+15 x^4+17 x^2+2 x+12$
- $y^2=9 x^6+x^5+x^4+4 x^3+5 x^2+6 x+4$
- $y^2=18 x^6+2 x^5+2 x^4+8 x^3+10 x^2+12 x+8$
- $y^2=11 x^6+13 x^5+6 x^4+18 x^3+8 x^2+3 x+6$
- $y^2=3 x^6+7 x^5+12 x^4+17 x^3+16 x^2+6 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ah $\times$ 1.19.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{19^{2}}$ is 1.361.al 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.