| L(s) = 1 | − 2·3-s + 2·5-s + 3·9-s + 4·11-s − 4·15-s + 8·23-s + 3·25-s − 4·27-s − 8·31-s − 8·33-s + 4·37-s + 6·45-s − 8·47-s − 6·49-s + 12·53-s + 8·55-s + 8·59-s + 8·67-s − 16·69-s + 16·71-s − 6·75-s + 5·81-s + 4·89-s + 16·93-s + 20·97-s + 12·99-s − 8·103-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 0.894·5-s + 9-s + 1.20·11-s − 1.03·15-s + 1.66·23-s + 3/5·25-s − 0.769·27-s − 1.43·31-s − 1.39·33-s + 0.657·37-s + 0.894·45-s − 1.16·47-s − 6/7·49-s + 1.64·53-s + 1.07·55-s + 1.04·59-s + 0.977·67-s − 1.92·69-s + 1.89·71-s − 0.692·75-s + 5/9·81-s + 0.423·89-s + 1.65·93-s + 2.03·97-s + 1.20·99-s − 0.788·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.066656278\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.066656278\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.62519253774895718935152712329, −7.25002159665600914188162589571, −6.71437334568133501819174401250, −6.65058702207034604098072641266, −6.11514710822997490710036913972, −5.67161351285352187841730525346, −5.24231885406943723300303669309, −4.92213648063589071330438463956, −4.45101121137643499489357337423, −3.64965689503982669160373755503, −3.52820316318549649250191117552, −2.54481659549443094326361845004, −1.97305351011013827453703602783, −1.29659145659768067057495387651, −0.72193166495151223931367925701,
0.72193166495151223931367925701, 1.29659145659768067057495387651, 1.97305351011013827453703602783, 2.54481659549443094326361845004, 3.52820316318549649250191117552, 3.64965689503982669160373755503, 4.45101121137643499489357337423, 4.92213648063589071330438463956, 5.24231885406943723300303669309, 5.67161351285352187841730525346, 6.11514710822997490710036913972, 6.65058702207034604098072641266, 6.71437334568133501819174401250, 7.25002159665600914188162589571, 7.62519253774895718935152712329