| L(s) = 1 | − 3·5-s + 2·7-s + 2·13-s + 4·17-s + 8·19-s − 9·23-s + 25-s − 2·29-s − 7·31-s − 6·35-s − 11·37-s + 6·41-s + 6·43-s − 16·47-s + 6·49-s − 8·53-s + 5·59-s + 6·61-s − 6·65-s + 15·67-s + 5·71-s − 2·73-s + 14·79-s + 10·83-s − 12·85-s + 7·89-s + 4·91-s + ⋯ |
| L(s) = 1 | − 1.34·5-s + 0.755·7-s + 0.554·13-s + 0.970·17-s + 1.83·19-s − 1.87·23-s + 1/5·25-s − 0.371·29-s − 1.25·31-s − 1.01·35-s − 1.80·37-s + 0.937·41-s + 0.914·43-s − 2.33·47-s + 6/7·49-s − 1.09·53-s + 0.650·59-s + 0.768·61-s − 0.744·65-s + 1.83·67-s + 0.593·71-s − 0.234·73-s + 1.57·79-s + 1.09·83-s − 1.30·85-s + 0.741·89-s + 0.419·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75898944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75898944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.252098973\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.252098973\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.83759616300998346646168961788, −7.72036104928894808309883722389, −7.38468642085246602758979611203, −7.12442818796937239745216254711, −6.48405108424065690282867098688, −6.33467667536438441401040690894, −5.77503212644068543761214247225, −5.44034047253880150875150526335, −5.13260006245767723164161409460, −4.95346993736919533949863942038, −4.34087531986733407334779298907, −3.86629603531077187530636678049, −3.58910511603259224570815072356, −3.57948479042599992143172610233, −3.06936253573987295863097995127, −2.33754167438792186562776983421, −1.87019642571345915445113381774, −1.59139422094954619345736616727, −0.841511632848326255381804365901, −0.44146815386578294920970869460,
0.44146815386578294920970869460, 0.841511632848326255381804365901, 1.59139422094954619345736616727, 1.87019642571345915445113381774, 2.33754167438792186562776983421, 3.06936253573987295863097995127, 3.57948479042599992143172610233, 3.58910511603259224570815072356, 3.86629603531077187530636678049, 4.34087531986733407334779298907, 4.95346993736919533949863942038, 5.13260006245767723164161409460, 5.44034047253880150875150526335, 5.77503212644068543761214247225, 6.33467667536438441401040690894, 6.48405108424065690282867098688, 7.12442818796937239745216254711, 7.38468642085246602758979611203, 7.72036104928894808309883722389, 7.83759616300998346646168961788