L(s) = 1 | + 2-s − 4-s − 3·8-s + 4·11-s − 16-s − 8·17-s + 4·22-s + 10·25-s − 4·29-s − 8·31-s + 5·32-s − 8·34-s + 16·37-s + 8·41-s − 4·44-s + 2·49-s + 10·50-s − 4·58-s − 8·62-s + 7·64-s + 8·68-s + 16·74-s + 8·82-s − 8·83-s − 12·88-s − 4·97-s + 2·98-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s + 1.20·11-s − 1/4·16-s − 1.94·17-s + 0.852·22-s + 2·25-s − 0.742·29-s − 1.43·31-s + 0.883·32-s − 1.37·34-s + 2.63·37-s + 1.24·41-s − 0.603·44-s + 2/7·49-s + 1.41·50-s − 0.525·58-s − 1.01·62-s + 7/8·64-s + 0.970·68-s + 1.85·74-s + 0.883·82-s − 0.878·83-s − 1.27·88-s − 0.406·97-s + 0.202·98-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.058299275\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.058299275\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.671460329837372450209993645902, −7.88390591795779701656894140322, −7.45509829577586183380880834585, −6.85858688864893954498436770232, −6.42910150387716351484663436476, −6.23395565084076397021939404120, −5.48729423501560285109521771709, −5.15761501207680469210158388583, −4.41855807939959967222179346040, −4.15780525881864344441323000860, −3.89407467832143456513551853660, −2.91160227261098715446466119546, −2.62479949450785067792117952970, −1.65257315265339974257143638207, −0.66782208448803880492810804458,
0.66782208448803880492810804458, 1.65257315265339974257143638207, 2.62479949450785067792117952970, 2.91160227261098715446466119546, 3.89407467832143456513551853660, 4.15780525881864344441323000860, 4.41855807939959967222179346040, 5.15761501207680469210158388583, 5.48729423501560285109521771709, 6.23395565084076397021939404120, 6.42910150387716351484663436476, 6.85858688864893954498436770232, 7.45509829577586183380880834585, 7.88390591795779701656894140322, 8.671460329837372450209993645902