Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 37 x^{2} )( 1 - 6 x + 37 x^{2} )$ |
$1 - 16 x + 134 x^{2} - 592 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.192861133077$, $\pm0.335828188403$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $32$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $896$ | $1892352$ | $2594243456$ | $3518775558144$ | $4809115816136576$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $1382$ | $51214$ | $1877518$ | $69351622$ | $2565714422$ | $94931878462$ | $3512481024286$ | $129961747154038$ | $4808584296930182$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=31 x^6+7 x^5+5 x^4+19 x^3+20 x^2+x+23$
- $y^2=2 x^6+3 x^5+22 x^4+17 x^3+29 x^2+21 x+34$
- $y^2=8 x^6+18 x^5+6 x^4+6 x^3+6 x^2+19 x+6$
- $y^2=22 x^6+16 x^5+13 x^4+28 x^3+13 x^2+16 x+22$
- $y^2=18 x^6+33 x^5+26 x^4+7 x^3+30 x^2+10 x+5$
- $y^2=5 x^6+36 x^5+19 x^4+23 x^3+20 x^2+28 x+24$
- $y^2=15 x^6+8 x^5+8 x^4+8 x^3+8 x^2+8 x+15$
- $y^2=5 x^6+12 x^5+17 x^4+30 x^3+14 x^2+34 x+24$
- $y^2=30 x^6+28 x^5+32 x^4+10 x^3+15 x^2+30 x+4$
- $y^2=17 x^6+26 x^5+2 x^4+30 x^3+14 x^2+16 x+22$
- $y^2=14 x^6+3 x^5+5 x^4+36 x^3+5 x^2+3 x+14$
- $y^2=13 x^6+30 x^5+20 x^4+10 x^3+2 x^2+35 x+22$
- $y^2=30 x^6+19 x^5+23 x^4+x^3+22 x^2+18 x+29$
- $y^2=13 x^6+23 x^5+30 x^4+20 x^3+30 x^2+23 x+13$
- $y^2=22 x^6+11 x^5+22 x^4+12 x^3+29 x^2+30$
- $y^2=5 x^6+11 x^5+34 x^4+4 x^3+34 x^2+11 x+5$
- $y^2=8 x^6+15 x^5+27 x^4+8 x^3+2 x^2+32 x$
- $y^2=22 x^6+22 x^5+7 x^4+17 x^3+7 x^2+22 x+22$
- $y^2=27 x^6+8 x^5+30 x^4+13 x^3+30 x^2+8 x+27$
- $y^2=35 x^6+27 x^5+8 x^4+15 x^3+8 x^2+27 x+35$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.ak $\times$ 1.37.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.