L(s) = 1 | − 2·4-s + 4·16-s − 5·25-s + 18·31-s − 12·37-s − 2·49-s − 8·64-s + 16·67-s + 14·97-s + 10·100-s − 11·121-s − 36·124-s + 127-s + 131-s + 137-s + 139-s + 24·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 4-s + 16-s − 25-s + 3.23·31-s − 1.97·37-s − 2/7·49-s − 64-s + 1.95·67-s + 1.42·97-s + 100-s − 121-s − 3.23·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.97·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.257531159\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.257531159\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.297858423351776486970693477356, −8.106808707805148257079498368224, −7.63941293516475222320202121138, −7.02927616764016986640786523396, −6.47536762303448627036528108419, −6.17939050885509418696344528358, −5.53574599634031313993894213502, −5.02214215515993588770461846303, −4.74128437563752599818078623862, −4.07875072482213286208485452201, −3.68099919773666417971605530724, −3.05431064544582565016184653726, −2.38371070597652097769642551029, −1.50010531288559013413049148237, −0.60243641146328273498954499795,
0.60243641146328273498954499795, 1.50010531288559013413049148237, 2.38371070597652097769642551029, 3.05431064544582565016184653726, 3.68099919773666417971605530724, 4.07875072482213286208485452201, 4.74128437563752599818078623862, 5.02214215515993588770461846303, 5.53574599634031313993894213502, 6.17939050885509418696344528358, 6.47536762303448627036528108419, 7.02927616764016986640786523396, 7.63941293516475222320202121138, 8.106808707805148257079498368224, 8.297858423351776486970693477356