Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 11 x + 67 x^{2} )( 1 - 5 x + 67 x^{2} )$ |
| $1 - 16 x + 189 x^{2} - 1072 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.265464728668$, $\pm0.401201937998$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $115$ |
| Isomorphism classes: | 216 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3591$ | $20709297$ | $90989102736$ | $406186704812889$ | $1822789826418605751$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $4612$ | $302524$ | $20157028$ | $1350089572$ | $90458036422$ | $6060711220252$ | $406067672135236$ | $27206534171210308$ | $1822837803114318532$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 115 curves (of which all are hyperelliptic):
- $y^2=18 x^6+28 x^5+9 x^4+46 x^3+13 x^2+65 x+6$
- $y^2=3 x^6+2 x^5+52 x^4+x^3+31 x^2+56 x+48$
- $y^2=2 x^6+27 x^5+9 x^4+24 x^3+64 x^2+3 x+57$
- $y^2=56 x^6+6 x^5+56 x^4+28 x^3+41 x^2+60 x+61$
- $y^2=14 x^6+64 x^5+18 x^4+31 x^3+65 x^2+36 x+44$
- $y^2=45 x^6+24 x^5+33 x^4+32 x^3+47 x^2+56 x+51$
- $y^2=3 x^6+34 x^5+57 x^4+7 x^3+20 x^2+2 x+43$
- $y^2=57 x^6+36 x^5+26 x^4+36 x^3+27 x^2+17 x+64$
- $y^2=46 x^6+18 x^5+25 x^4+43 x^3+34 x^2+24 x+58$
- $y^2=12 x^6+60 x^5+27 x^4+22 x^3+2 x^2+45 x+45$
- $y^2=23 x^6+65 x^5+47 x^4+9 x^3+4 x^2+41 x+52$
- $y^2=10 x^6+45 x^5+47 x^4+7 x^3+65 x^2+18 x+41$
- $y^2=30 x^6+4 x^5+63 x^4+42 x^3+8 x^2+43 x+33$
- $y^2=30 x^6+18 x^5+28 x^4+50 x^3+19 x^2+15 x+18$
- $y^2=20 x^6+63 x^5+33 x^4+17 x^3+13 x^2+33 x+43$
- $y^2=50 x^6+20 x^5+60 x^4+56 x^3+65 x^2+12 x+38$
- $y^2=33 x^6+25 x^5+59 x^4+11 x^3+34 x^2+20 x+57$
- $y^2=19 x^6+41 x^4+39 x^3+12 x^2+6$
- $y^2=47 x^6+37 x^5+18 x^4+23 x^3+41 x^2+53 x+65$
- $y^2=41 x^6+40 x^5+27 x^4+29 x^2+57 x+16$
- and 95 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{3}}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.al $\times$ 1.67.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{67^{3}}$ is 1.300763.bhw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.