L(s) = 1 | − 4·5-s + 4·11-s + 6·25-s + 8·31-s − 4·37-s + 16·47-s − 2·49-s − 4·53-s − 16·55-s + 8·59-s − 4·89-s − 4·97-s − 8·103-s − 4·113-s + 5·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·155-s + 157-s + 163-s + 167-s + 6·169-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 1.20·11-s + 6/5·25-s + 1.43·31-s − 0.657·37-s + 2.33·47-s − 2/7·49-s − 0.549·53-s − 2.15·55-s + 1.04·59-s − 0.423·89-s − 0.406·97-s − 0.788·103-s − 0.376·113-s + 5/11·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.228178605\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.228178605\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.343180798202676655298184263414, −7.87524926693289186748273169556, −7.60239007294527072421775172501, −7.05374296981909562169259099530, −6.66960195184789502623846379940, −6.28244954984534037656450972334, −5.58273797500418171414855122983, −5.08744897014392907333183377880, −4.31455536593277949273106493230, −4.15194945563185952972528092753, −3.72489394124566965564657676313, −3.10905144406399840643454618813, −2.46473763190113210445772453261, −1.44107643273385105055050516054, −0.60155926564354526102394148198,
0.60155926564354526102394148198, 1.44107643273385105055050516054, 2.46473763190113210445772453261, 3.10905144406399840643454618813, 3.72489394124566965564657676313, 4.15194945563185952972528092753, 4.31455536593277949273106493230, 5.08744897014392907333183377880, 5.58273797500418171414855122983, 6.28244954984534037656450972334, 6.66960195184789502623846379940, 7.05374296981909562169259099530, 7.60239007294527072421775172501, 7.87524926693289186748273169556, 8.343180798202676655298184263414