Properties

Label 4-792e2-1.1-c1e2-0-107
Degree $4$
Conductor $627264$
Sign $-1$
Analytic cond. $39.9948$
Root an. cond. $2.51478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·25-s − 4·37-s + 12·47-s − 2·49-s − 12·59-s − 12·61-s − 12·71-s − 12·73-s − 20·97-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 2/5·25-s − 0.657·37-s + 1.75·47-s − 2/7·49-s − 1.56·59-s − 1.53·61-s − 1.42·71-s − 1.40·73-s − 2.03·97-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627264\)    =    \(2^{6} \cdot 3^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(39.9948\)
Root analytic conductor: \(2.51478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 627264,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11$C_2$ \( 1 + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.5.a_c
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.7.a_c
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \) 2.17.a_ao
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.19.a_c
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \) 2.29.a_bi
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.31.a_ac
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.37.e_da
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \) 2.41.a_k
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.43.a_by
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) 2.47.am_dq
53$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \) 2.53.a_cw
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.59.m_eo
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.m_fm
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.67.a_cs
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.71.m_fm
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.m_gk
79$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \) 2.79.a_adq
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.83.a_w
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \) 2.89.a_by
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.97.u_li
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.123376859535030826915663096921, −7.60639720423994913820312636549, −7.40192514689173451455286483708, −6.82904681959702450336392127549, −6.30361392447786260638161793782, −5.86897575489338982489911115236, −5.47338262560586041221114103121, −4.86315308521608318221501343987, −4.31381139790945275411404795319, −3.96096085319765947565792861475, −3.13937043242239122970617447602, −2.79432427599189542862840513494, −1.92612879946416134896046820425, −1.27860721462426115119720273714, 0, 1.27860721462426115119720273714, 1.92612879946416134896046820425, 2.79432427599189542862840513494, 3.13937043242239122970617447602, 3.96096085319765947565792861475, 4.31381139790945275411404795319, 4.86315308521608318221501343987, 5.47338262560586041221114103121, 5.86897575489338982489911115236, 6.30361392447786260638161793782, 6.82904681959702450336392127549, 7.40192514689173451455286483708, 7.60639720423994913820312636549, 8.123376859535030826915663096921

Graph of the $Z$-function along the critical line