L(s) = 1 | − 2·25-s − 4·37-s + 12·47-s − 2·49-s − 12·59-s − 12·61-s − 12·71-s − 12·73-s − 20·97-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 2/5·25-s − 0.657·37-s + 1.75·47-s − 2/7·49-s − 1.56·59-s − 1.53·61-s − 1.42·71-s − 1.40·73-s − 2.03·97-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.123376859535030826915663096921, −7.60639720423994913820312636549, −7.40192514689173451455286483708, −6.82904681959702450336392127549, −6.30361392447786260638161793782, −5.86897575489338982489911115236, −5.47338262560586041221114103121, −4.86315308521608318221501343987, −4.31381139790945275411404795319, −3.96096085319765947565792861475, −3.13937043242239122970617447602, −2.79432427599189542862840513494, −1.92612879946416134896046820425, −1.27860721462426115119720273714, 0,
1.27860721462426115119720273714, 1.92612879946416134896046820425, 2.79432427599189542862840513494, 3.13937043242239122970617447602, 3.96096085319765947565792861475, 4.31381139790945275411404795319, 4.86315308521608318221501343987, 5.47338262560586041221114103121, 5.86897575489338982489911115236, 6.30361392447786260638161793782, 6.82904681959702450336392127549, 7.40192514689173451455286483708, 7.60639720423994913820312636549, 8.123376859535030826915663096921