L(s) = 1 | + 3·3-s − 2·4-s − 5·7-s + 6·9-s − 6·12-s − 9·13-s − 15·21-s − 10·25-s + 9·27-s + 10·28-s + 3·31-s − 12·36-s + 10·37-s − 27·39-s − 16·43-s + 18·49-s + 18·52-s − 30·63-s + 8·64-s − 5·67-s + 3·73-s − 30·75-s + 34·79-s + 9·81-s + 30·84-s + 45·91-s + 9·93-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 4-s − 1.88·7-s + 2·9-s − 1.73·12-s − 2.49·13-s − 3.27·21-s − 2·25-s + 1.73·27-s + 1.88·28-s + 0.538·31-s − 2·36-s + 1.64·37-s − 4.32·39-s − 2.43·43-s + 18/7·49-s + 2.49·52-s − 3.77·63-s + 64-s − 0.610·67-s + 0.351·73-s − 3.46·75-s + 3.82·79-s + 81-s + 3.27·84-s + 4.71·91-s + 0.933·93-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.055990222\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.055990222\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24839410569640360771890861367, −9.704766783408996358295623567601, −9.680575689277084583703114949302, −9.289238742132577883839838902371, −9.133076436879259073891665810764, −8.334252719304444529227826274857, −8.060266070560386196087412026357, −7.53633778876488505355119721477, −7.31912851141035435706283555839, −6.50192044663494780148870094389, −6.48825850855240248749710859238, −5.54042192951823015483651674087, −4.99321505315219389416143148227, −4.44482638401852751643074842468, −4.06935044484267778337421263085, −3.37718276873004773960386884762, −3.15033951784934076351455515258, −2.28752783874445607201004407314, −2.16607096120113883519053262486, −0.44401093016556136145152491538,
0.44401093016556136145152491538, 2.16607096120113883519053262486, 2.28752783874445607201004407314, 3.15033951784934076351455515258, 3.37718276873004773960386884762, 4.06935044484267778337421263085, 4.44482638401852751643074842468, 4.99321505315219389416143148227, 5.54042192951823015483651674087, 6.48825850855240248749710859238, 6.50192044663494780148870094389, 7.31912851141035435706283555839, 7.53633778876488505355119721477, 8.060266070560386196087412026357, 8.334252719304444529227826274857, 9.133076436879259073891665810764, 9.289238742132577883839838902371, 9.680575689277084583703114949302, 9.704766783408996358295623567601, 10.24839410569640360771890861367