Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 73 x^{2} )( 1 + 7 x + 73 x^{2} )$ |
| $1 - 3 x + 76 x^{2} - 219 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.301013746420$, $\pm0.634347079753$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $288$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5184$ | $29175552$ | $151333588224$ | $806738206546944$ | $4297784790647029824$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $71$ | $5473$ | $389018$ | $28408033$ | $2073148271$ | $151332950158$ | $11047391007479$ | $806460130961281$ | $58871586708267914$ | $4297625831889913393$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=42 x^6+28 x^5+72 x^4+53 x^3+44 x^2+42 x+11$
- $y^2=20 x^6+29 x^5+5 x^4+45 x^3+54 x^2+59 x+13$
- $y^2=11 x^6+30 x^5+21 x^4+62 x^3+67 x^2+17 x+48$
- $y^2=56 x^6+16 x^5+2 x^4+20 x^3+37 x^2+54 x$
- $y^2=45 x^6+25 x^5+65 x^4+46 x^3+15 x^2+13 x+46$
- $y^2=61 x^6+33 x^5+47 x^4+29 x^3+19 x^2+18 x+47$
- $y^2=19 x^6+58 x^5+66 x^4+10 x^3+17 x^2+37 x+58$
- $y^2=42 x^6+42 x^5+47 x^4+22 x^2+42 x+59$
- $y^2=55 x^6+61 x^5+69 x^4+3 x^3+29 x^2+18 x+5$
- $y^2=8 x^6+29 x^5+65 x^4+17 x^3+16 x^2+2 x+47$
- $y^2=56 x^5+60 x^4+27 x^3+20 x^2+4 x+20$
- $y^2=34 x^6+61 x^5+11 x^4+52 x^3+36 x^2+36 x+67$
- $y^2=8 x^6+35 x^5+18 x^4+x^3+24 x^2+32 x+66$
- $y^2=47 x^6+59 x^5+50 x^4+48 x^3+33 x^2+64 x+6$
- $y^2=41 x^6+42 x^5+67 x^4+50 x^3+51 x^2+18 x+35$
- $y^2=5 x^6+31 x^5+6 x^4+17 x^3+8 x^2+13 x+23$
- $y^2=66 x^6+69 x^5+46 x^4+36 x^3+36 x^2+9 x+68$
- $y^2=13 x^6+59 x^5+36 x^4+2 x^3+18 x^2+34$
- $y^2=28 x^6+45 x^5+36 x^3+11 x^2+9 x$
- $y^2=43 x^6+25 x^5+x^4+2 x^3+19 x^2+4 x+19$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{6}}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.ak $\times$ 1.73.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{73^{6}}$ is 1.151334226289.abkhxa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
- Endomorphism algebra over $\F_{73^{2}}$
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.bu $\times$ 1.5329.dt. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{73^{3}}$
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.abtu $\times$ 1.389017.btu. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.