L(s) = 1 | + 3·4-s − 4·7-s − 3·9-s − 4·11-s + 5·16-s + 2·25-s − 12·28-s − 9·36-s + 6·37-s − 8·41-s − 12·44-s − 16·47-s + 9·49-s + 16·53-s + 12·63-s + 3·64-s − 8·71-s + 28·73-s + 16·77-s + 9·81-s + 8·83-s + 12·99-s + 6·100-s + 8·101-s + 8·107-s − 20·112-s − 6·121-s + ⋯ |
L(s) = 1 | + 3/2·4-s − 1.51·7-s − 9-s − 1.20·11-s + 5/4·16-s + 2/5·25-s − 2.26·28-s − 3/2·36-s + 0.986·37-s − 1.24·41-s − 1.80·44-s − 2.33·47-s + 9/7·49-s + 2.19·53-s + 1.51·63-s + 3/8·64-s − 0.949·71-s + 3.27·73-s + 1.82·77-s + 81-s + 0.878·83-s + 1.20·99-s + 3/5·100-s + 0.796·101-s + 0.773·107-s − 1.88·112-s − 0.545·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.515453102\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.515453102\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.213071737540256960352572016657, −8.041771390690434230737787313983, −7.34600041817173219165717323104, −7.04912388169264662518464809687, −6.43127151070208806055186331771, −6.34818869886641312808957189532, −5.80493175472966495170573698895, −5.24888090740380272281329342041, −4.88461289229920871087832768725, −3.83887086887814662235394780648, −3.31478131886312285618798210207, −2.93428679795690465335967583405, −2.47725689837240047387960069750, −1.92341591010950894892246881327, −0.57418614117802865819084681195,
0.57418614117802865819084681195, 1.92341591010950894892246881327, 2.47725689837240047387960069750, 2.93428679795690465335967583405, 3.31478131886312285618798210207, 3.83887086887814662235394780648, 4.88461289229920871087832768725, 5.24888090740380272281329342041, 5.80493175472966495170573698895, 6.34818869886641312808957189532, 6.43127151070208806055186331771, 7.04912388169264662518464809687, 7.34600041817173219165717323104, 8.041771390690434230737787313983, 8.213071737540256960352572016657