L(s) = 1 | − 8·5-s − 2·19-s − 8·23-s + 38·25-s − 16·43-s + 24·47-s − 5·49-s + 16·53-s + 22·67-s − 16·71-s + 2·73-s + 16·95-s + 10·97-s + 64·115-s − 6·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 25·169-s + 173-s + ⋯ |
L(s) = 1 | − 3.57·5-s − 0.458·19-s − 1.66·23-s + 38/5·25-s − 2.43·43-s + 3.50·47-s − 5/7·49-s + 2.19·53-s + 2.68·67-s − 1.89·71-s + 0.234·73-s + 1.64·95-s + 1.01·97-s + 5.96·115-s − 0.545·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.92·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.436935636553848381287809833571, −7.81691005573428420219270637054, −7.79497553082532979201942816895, −7.10779417054369901884210967178, −6.95550481778817521461633350929, −6.26835620712934777806767466135, −5.48459428248370426498378218555, −4.89100895617758020071400224207, −4.26855993529976659346243710008, −3.99250331289836498435902686175, −3.69750599103534829997472001297, −3.09788365205681643264055516753, −2.25841445893885244621860894044, −0.814042897317595391550620129269, 0,
0.814042897317595391550620129269, 2.25841445893885244621860894044, 3.09788365205681643264055516753, 3.69750599103534829997472001297, 3.99250331289836498435902686175, 4.26855993529976659346243710008, 4.89100895617758020071400224207, 5.48459428248370426498378218555, 6.26835620712934777806767466135, 6.95550481778817521461633350929, 7.10779417054369901884210967178, 7.79497553082532979201942816895, 7.81691005573428420219270637054, 8.436935636553848381287809833571