Properties

Label 4-72e3-1.1-c1e2-0-7
Degree $4$
Conductor $373248$
Sign $-1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s − 2·19-s − 8·23-s + 38·25-s − 16·43-s + 24·47-s − 5·49-s + 16·53-s + 22·67-s − 16·71-s + 2·73-s + 16·95-s + 10·97-s + 64·115-s − 6·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 25·169-s + 173-s + ⋯
L(s)  = 1  − 3.57·5-s − 0.458·19-s − 1.66·23-s + 38/5·25-s − 2.43·43-s + 3.50·47-s − 5/7·49-s + 2.19·53-s + 2.68·67-s − 1.89·71-s + 0.234·73-s + 1.64·95-s + 1.01·97-s + 5.96·115-s − 0.545·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.92·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.5.i_ba
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.7.a_f
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.a_g
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) 2.13.a_z
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.17.a_s
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.19.c_bn
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.23.i_ck
29$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.29.a_cg
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.a_bu
37$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.37.a_ah
41$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.41.a_de
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.43.q_fu
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \) 2.47.ay_je
53$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.53.aq_go
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.59.a_dy
61$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.61.a_dt
67$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \) 2.67.aw_jv
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.71.q_hy
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \) 2.73.ac_fr
79$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.79.a_fd
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.83.a_dy
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.89.a_bi
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \) 2.97.ak_il
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.436935636553848381287809833571, −7.81691005573428420219270637054, −7.79497553082532979201942816895, −7.10779417054369901884210967178, −6.95550481778817521461633350929, −6.26835620712934777806767466135, −5.48459428248370426498378218555, −4.89100895617758020071400224207, −4.26855993529976659346243710008, −3.99250331289836498435902686175, −3.69750599103534829997472001297, −3.09788365205681643264055516753, −2.25841445893885244621860894044, −0.814042897317595391550620129269, 0, 0.814042897317595391550620129269, 2.25841445893885244621860894044, 3.09788365205681643264055516753, 3.69750599103534829997472001297, 3.99250331289836498435902686175, 4.26855993529976659346243710008, 4.89100895617758020071400224207, 5.48459428248370426498378218555, 6.26835620712934777806767466135, 6.95550481778817521461633350929, 7.10779417054369901884210967178, 7.79497553082532979201942816895, 7.81691005573428420219270637054, 8.436935636553848381287809833571

Graph of the $Z$-function along the critical line