L(s) = 1 | − 5-s + 9·23-s − 3·25-s + 5·29-s − 4·43-s − 13·47-s − 4·49-s + 17·53-s + 23·67-s + 3·71-s − 16·73-s − 4·97-s + 6·101-s − 9·115-s − 11·121-s + 2·125-s + 127-s + 131-s + 137-s + 139-s − 5·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.87·23-s − 3/5·25-s + 0.928·29-s − 0.609·43-s − 1.89·47-s − 4/7·49-s + 2.33·53-s + 2.80·67-s + 0.356·71-s − 1.87·73-s − 0.406·97-s + 0.597·101-s − 0.839·115-s − 121-s + 0.178·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.415·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.579531049\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.579531049\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.613633023710871141898078772500, −8.183026916630829532508822168583, −7.946897717557898649310154325862, −7.18045734038021019825026836950, −6.84877675609357305815730528152, −6.57609222830121137454830846197, −5.78959609847245488036470391940, −5.30991068203984016563932002754, −4.85673024484707513197377277929, −4.33025880861368631193568619062, −3.68173993585083320553818156260, −3.16282307233805407347382321224, −2.57301249178048329097665968611, −1.68759942319642721269983818167, −0.72603716773611836925012243900,
0.72603716773611836925012243900, 1.68759942319642721269983818167, 2.57301249178048329097665968611, 3.16282307233805407347382321224, 3.68173993585083320553818156260, 4.33025880861368631193568619062, 4.85673024484707513197377277929, 5.30991068203984016563932002754, 5.78959609847245488036470391940, 6.57609222830121137454830846197, 6.84877675609357305815730528152, 7.18045734038021019825026836950, 7.946897717557898649310154325862, 8.183026916630829532508822168583, 8.613633023710871141898078772500