L(s) = 1 | + 4·11-s + 2·13-s + 4·23-s − 2·25-s + 2·37-s − 4·47-s − 49-s + 12·59-s + 2·61-s + 16·71-s + 6·73-s − 8·83-s + 6·97-s − 4·107-s − 12·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 8·143-s + 149-s + 151-s + 157-s + 163-s + 167-s − 19·169-s + ⋯ |
L(s) = 1 | + 1.20·11-s + 0.554·13-s + 0.834·23-s − 2/5·25-s + 0.328·37-s − 0.583·47-s − 1/7·49-s + 1.56·59-s + 0.256·61-s + 1.89·71-s + 0.702·73-s − 0.878·83-s + 0.609·97-s − 0.386·107-s − 1.14·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.668·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.46·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.086584579\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.086584579\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.743912193418616822864910425073, −8.184320786590837395942904402833, −7.941676071030135990913003078896, −7.16223801271259372079253947760, −6.81469679352057428554685304429, −6.44853603535450955720124481511, −5.92423783741422435038698284803, −5.33831608143869498911430837835, −4.90152044564084412247796703588, −4.12420574187993066594736002836, −3.82654759034938098041962994491, −3.21886801647729298479210530147, −2.45674529157672829054902809510, −1.65457487863733924887715004440, −0.869770728637159829995538902484,
0.869770728637159829995538902484, 1.65457487863733924887715004440, 2.45674529157672829054902809510, 3.21886801647729298479210530147, 3.82654759034938098041962994491, 4.12420574187993066594736002836, 4.90152044564084412247796703588, 5.33831608143869498911430837835, 5.92423783741422435038698284803, 6.44853603535450955720124481511, 6.81469679352057428554685304429, 7.16223801271259372079253947760, 7.941676071030135990913003078896, 8.184320786590837395942904402833, 8.743912193418616822864910425073