Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 47 x^{2} )( 1 + 6 x + 47 x^{2} )$ |
$1 + 4 x + 82 x^{2} + 188 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.453403488155$, $\pm0.644169619151$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $192$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2484$ | $5216400$ | $10742289012$ | $23798468736000$ | $52599830349369204$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $2358$ | $103468$ | $4877054$ | $229348052$ | $10779158646$ | $506624378060$ | $23811291512446$ | $1119130354509556$ | $52599132201233718$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):
- $y^2=31 x^6+35 x^5+27 x^4+19 x^3+18 x^2+26 x+44$
- $y^2=8 x^6+36 x^5+44 x^4+11 x^3+4 x^2+16 x+42$
- $y^2=x^5+35 x^4+29 x^3+11 x^2+2 x+4$
- $y^2=32 x^6+12 x^5+21 x^4+6 x^3+32 x^2+18 x+14$
- $y^2=16 x^6+7 x^5+31 x^4+12 x^3+42 x^2+36 x+8$
- $y^2=37 x^6+25 x^5+x^4+36 x^3+23 x^2+13 x+28$
- $y^2=17 x^6+5 x^5+40 x^4+21 x^3+28 x^2+14 x+23$
- $y^2=6 x^6+16 x^5+29 x^4+40 x^3+29 x^2+16 x+6$
- $y^2=36 x^6+17 x^5+16 x^4+36 x^3+38 x^2+24 x+36$
- $y^2=12 x^6+32 x^5+35 x^4+21 x^3+24 x^2+12 x+9$
- $y^2=28 x^6+23 x^5+24 x^4+24 x^3+20 x^2+6 x+32$
- $y^2=25 x^6+5 x^5+37 x^4+27 x^2+44 x+8$
- $y^2=28 x^6+7 x^5+41 x^4+46 x^3+28 x^2+11 x+30$
- $y^2=10 x^6+25 x^5+27 x^4+19 x^3+37 x^2+39 x+31$
- $y^2=17 x^6+20 x^5+39 x^4+9 x^3+15 x^2+30 x$
- $y^2=46 x^6+10 x^5+4 x^4+29 x^3+12 x^2+28 x+1$
- $y^2=12 x^6+44 x^5+37 x^4+44 x^3+8 x^2+2 x+3$
- $y^2=31 x^6+44 x^5+41 x^4+33 x^3+17 x^2+14 x+13$
- $y^2=35 x^6+29 x^5+18 x^4+44 x^3+43 x^2+2 x+13$
- $y^2=28 x^5+32 x^4+x^3+46 x^2+33 x+43$
- and 172 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.ac $\times$ 1.47.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ai_ec | $2$ | (not in LMFDB) |
2.47.ae_de | $2$ | (not in LMFDB) |
2.47.i_ec | $2$ | (not in LMFDB) |