L(s) = 1 | + 2-s − 4-s − 3·8-s − 9-s − 6·13-s − 16-s + 4·17-s − 18-s − 6·26-s + 6·29-s + 5·32-s + 4·34-s + 36-s + 6·37-s − 6·41-s + 49-s + 6·52-s + 2·53-s + 6·58-s − 4·61-s + 7·64-s − 4·68-s + 3·72-s + 12·73-s + 6·74-s − 8·81-s − 6·82-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1/3·9-s − 1.66·13-s − 1/4·16-s + 0.970·17-s − 0.235·18-s − 1.17·26-s + 1.11·29-s + 0.883·32-s + 0.685·34-s + 1/6·36-s + 0.986·37-s − 0.937·41-s + 1/7·49-s + 0.832·52-s + 0.274·53-s + 0.787·58-s − 0.512·61-s + 7/8·64-s − 0.485·68-s + 0.353·72-s + 1.40·73-s + 0.697·74-s − 8/9·81-s − 0.662·82-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.252818180470357764842845764436, −7.88168771386780471505655762516, −7.43591409041346529657793384057, −6.76640486847301517400298008736, −6.50853201149725989194514533363, −5.68132074281376792518268081312, −5.52034702675461869673387682345, −4.92725852691573408311308261574, −4.56464990608240063803500415493, −4.02198087305869023714899120853, −3.35637638885930627082458538435, −2.80549575878520939326902290746, −2.38407666571573695290426850338, −1.17001645422738999705577748510, 0,
1.17001645422738999705577748510, 2.38407666571573695290426850338, 2.80549575878520939326902290746, 3.35637638885930627082458538435, 4.02198087305869023714899120853, 4.56464990608240063803500415493, 4.92725852691573408311308261574, 5.52034702675461869673387682345, 5.68132074281376792518268081312, 6.50853201149725989194514533363, 6.76640486847301517400298008736, 7.43591409041346529657793384057, 7.88168771386780471505655762516, 8.252818180470357764842845764436