| L(s) = 1 | + 2·3-s + 9-s − 4·19-s + 2·25-s − 4·27-s + 8·31-s + 4·37-s + 4·43-s + 49-s − 8·57-s − 8·61-s + 28·67-s − 4·73-s + 4·75-s + 8·79-s − 11·81-s + 16·93-s + 20·97-s + 8·103-s + 12·109-s + 8·111-s − 2·121-s + 127-s + 8·129-s + 131-s + 137-s + 139-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 1/3·9-s − 0.917·19-s + 2/5·25-s − 0.769·27-s + 1.43·31-s + 0.657·37-s + 0.609·43-s + 1/7·49-s − 1.05·57-s − 1.02·61-s + 3.42·67-s − 0.468·73-s + 0.461·75-s + 0.900·79-s − 1.22·81-s + 1.65·93-s + 2.03·97-s + 0.788·103-s + 1.14·109-s + 0.759·111-s − 0.181·121-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.700585138\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.700585138\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.490774623548777829279143931272, −8.236929819141841651765583148722, −7.76184574695327516296942252395, −7.39662466347816178946335348937, −6.70219109517965929169425331842, −6.36837472820407922258609562378, −5.87251555095505554762785577531, −5.19965403964428379997838793216, −4.64390893417890606282636950921, −4.15500671660247759192407437414, −3.58419662545083671849840604277, −3.02966923238249300624363459220, −2.42215575681526220167540111009, −1.98384498746613515564254023172, −0.835341901598669086898097970815,
0.835341901598669086898097970815, 1.98384498746613515564254023172, 2.42215575681526220167540111009, 3.02966923238249300624363459220, 3.58419662545083671849840604277, 4.15500671660247759192407437414, 4.64390893417890606282636950921, 5.19965403964428379997838793216, 5.87251555095505554762785577531, 6.36837472820407922258609562378, 6.70219109517965929169425331842, 7.39662466347816178946335348937, 7.76184574695327516296942252395, 8.236929819141841651765583148722, 8.490774623548777829279143931272