L(s) = 1 | + 4·3-s − 4-s + 8·7-s + 8·9-s − 4·11-s − 4·12-s + 6·13-s + 16-s − 6·17-s + 4·19-s + 32·21-s − 4·23-s + 12·27-s − 8·28-s − 12·31-s − 16·33-s − 8·36-s + 8·37-s + 24·39-s − 2·41-s + 4·43-s + 4·44-s + 8·47-s + 4·48-s + 34·49-s − 24·51-s − 6·52-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 1/2·4-s + 3.02·7-s + 8/3·9-s − 1.20·11-s − 1.15·12-s + 1.66·13-s + 1/4·16-s − 1.45·17-s + 0.917·19-s + 6.98·21-s − 0.834·23-s + 2.30·27-s − 1.51·28-s − 2.15·31-s − 2.78·33-s − 4/3·36-s + 1.31·37-s + 3.84·39-s − 0.312·41-s + 0.609·43-s + 0.603·44-s + 1.16·47-s + 0.577·48-s + 34/7·49-s − 3.36·51-s − 0.832·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.436685679\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.436685679\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69230141346312878733575073106, −10.50995344518017094117188706889, −9.680615308790925975410767732842, −9.099932212278949182346080681223, −8.898518633300712452835778985469, −8.514638629328725393562084395657, −8.339454159776964439691924760256, −7.78130754168409653656442853786, −7.56032667219278632310416589852, −7.38307143300473749531414122598, −6.24109712071149530818496442990, −5.63754566183678985905293028138, −5.11997989042394332386228669993, −4.66359968432755867174297593366, −3.96460363608794387542605870769, −3.95602209396462671654605519498, −2.89701658083814475441146994724, −2.46480791941972673868533947489, −1.76321948263743566535957896502, −1.39431479805397634058392889079,
1.39431479805397634058392889079, 1.76321948263743566535957896502, 2.46480791941972673868533947489, 2.89701658083814475441146994724, 3.95602209396462671654605519498, 3.96460363608794387542605870769, 4.66359968432755867174297593366, 5.11997989042394332386228669993, 5.63754566183678985905293028138, 6.24109712071149530818496442990, 7.38307143300473749531414122598, 7.56032667219278632310416589852, 7.78130754168409653656442853786, 8.339454159776964439691924760256, 8.514638629328725393562084395657, 8.898518633300712452835778985469, 9.099932212278949182346080681223, 9.680615308790925975410767732842, 10.50995344518017094117188706889, 10.69230141346312878733575073106