Properties

Label 2.3.ae_i
Base Field $\F_{3}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 8 x^{2} - 12 x^{3} + 9 x^{4}$
Frobenius angles:  $\pm0.0540867239847$, $\pm0.445913276015$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\zeta_{8})\)
Galois group:  $C_2^2$
Jacobians:  1

This isogeny class is simple but not geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 2 68 626 4624 49282 532100 4898098 42614784 381715394 3486898628

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 10 24 54 200 730 2240 6494 19392 59050

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\).
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{4}}$ is 1.81.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.e_i$2$2.9.a_ao
2.3.ae_k$8$(not in LMFDB)
2.3.a_ac$8$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.e_i$2$2.9.a_ao
2.3.ae_k$8$(not in LMFDB)
2.3.a_ac$8$(not in LMFDB)
2.3.a_c$8$(not in LMFDB)
2.3.e_k$8$(not in LMFDB)
2.3.ac_b$24$(not in LMFDB)
2.3.c_b$24$(not in LMFDB)