Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 2 x^{2} - 106 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.219034191615$, $\pm0.719034191615$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{105})\) |
Galois group: | $C_2^2$ |
Jacobians: | $184$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2704$ | $7895680$ | $22117662736$ | $62341762662400$ | $174898777900806544$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $2810$ | $148564$ | $7900878$ | $418222532$ | $22164361130$ | $1174713069764$ | $62259667934878$ | $3299763467039572$ | $174887470365513050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):
- $y^2=31 x^6+x^5+x^4+43 x^3+29 x^2+22 x+19$
- $y^2=11 x^6+42 x^5+30 x^4+44 x^3+27 x^2+15 x+10$
- $y^2=26 x^6+19 x^5+41 x^4+4 x^3+33 x^2+42 x+9$
- $y^2=45 x^5+24 x^4+26 x^3+17 x^2+41 x+18$
- $y^2=51 x^6+14 x^5+36 x^4+39 x^3+35 x^2+15 x+26$
- $y^2=18 x^6+40 x^5+35 x^4+45 x^3+14 x^2+44 x+1$
- $y^2=12 x^6+9 x^5+17 x^4+47 x^3+49 x^2+39 x+18$
- $y^2=21 x^6+8 x^5+37 x^4+9 x^2+39 x+3$
- $y^2=17 x^6+44 x^5+29 x^4+39 x^3+22 x^2+x+31$
- $y^2=51 x^6+46 x^5+11 x^4+37 x^3+41 x^2+48 x+44$
- $y^2=13 x^6+2 x^5+42 x^4+18 x^3+x^2+41 x+1$
- $y^2=25 x^6+34 x^5+22 x^4+2 x^3+21 x^2+6 x+5$
- $y^2=29 x^6+28 x^5+4 x^4+34 x^3+35 x^2+21 x+15$
- $y^2=37 x^6+38 x^5+35 x^4+35 x^2+15 x+37$
- $y^2=16 x^5+15 x^4+38 x^3+30 x^2+21 x+12$
- $y^2=30 x^6+12 x^5+24 x^4+24 x^3+44 x^2+14 x+51$
- $y^2=28 x^5+15 x^4+38 x^3+47 x^2+39 x+14$
- $y^2=25 x^6+46 x^5+27 x^4+36 x^3+16 x^2+4 x+23$
- $y^2=35 x^5+35 x^4+52 x^3+20 x^2+37 x+35$
- $y^2=44 x^6+3 x^5+35 x^4+39 x^3+43 x^2+48 x+17$
- and 164 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{4}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{105})\). |
The base change of $A$ to $\F_{53^{4}}$ is 1.7890481.hry 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-105}) \)$)$ |
- Endomorphism algebra over $\F_{53^{2}}$
The base change of $A$ to $\F_{53^{2}}$ is the simple isogeny class 2.2809.a_hry and its endomorphism algebra is \(\Q(i, \sqrt{105})\).
Base change
This is a primitive isogeny class.