L(s) = 1 | + 3-s + 4-s + 9-s + 12-s + 16-s + 6·25-s + 27-s + 16·31-s + 36-s − 12·37-s + 48-s − 49-s + 64-s + 8·67-s + 6·75-s + 81-s + 16·93-s − 4·97-s + 6·100-s + 16·103-s + 108-s − 12·111-s − 11·121-s + 16·124-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s + 1/3·9-s + 0.288·12-s + 1/4·16-s + 6/5·25-s + 0.192·27-s + 2.87·31-s + 1/6·36-s − 1.97·37-s + 0.144·48-s − 1/7·49-s + 1/8·64-s + 0.977·67-s + 0.692·75-s + 1/9·81-s + 1.65·93-s − 0.406·97-s + 3/5·100-s + 1.57·103-s + 0.0962·108-s − 1.13·111-s − 121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.997767198\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.997767198\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.427320118496747297923118784405, −7.945277664925413146869578375537, −7.54714567060291177997240636945, −6.91860101663622022839962948199, −6.65671387473043484663124717512, −6.30995717749514047642236002575, −5.61118798593894762517062609411, −5.04505323264218432109500685486, −4.66936862862104140298648216317, −4.05846835019594605953583132544, −3.40045925378498278687049642657, −2.93483398088269947909595913869, −2.44212016027147018945820046564, −1.68761492412906607070083117625, −0.878331981291367230472612234111,
0.878331981291367230472612234111, 1.68761492412906607070083117625, 2.44212016027147018945820046564, 2.93483398088269947909595913869, 3.40045925378498278687049642657, 4.05846835019594605953583132544, 4.66936862862104140298648216317, 5.04505323264218432109500685486, 5.61118798593894762517062609411, 6.30995717749514047642236002575, 6.65671387473043484663124717512, 6.91860101663622022839962948199, 7.54714567060291177997240636945, 7.945277664925413146869578375537, 8.427320118496747297923118784405