L(s) = 1 | + 3-s − 2·4-s + 2·7-s + 9-s − 2·12-s + 4·16-s + 2·21-s − 7·25-s + 27-s − 4·28-s − 4·29-s − 2·36-s + 16·43-s + 4·48-s − 7·49-s + 24·53-s + 4·59-s − 4·61-s + 2·63-s − 8·64-s − 12·71-s + 6·73-s − 7·75-s + 81-s − 4·84-s − 4·87-s + 8·89-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s + 0.755·7-s + 1/3·9-s − 0.577·12-s + 16-s + 0.436·21-s − 7/5·25-s + 0.192·27-s − 0.755·28-s − 0.742·29-s − 1/3·36-s + 2.43·43-s + 0.577·48-s − 49-s + 3.29·53-s + 0.520·59-s − 0.512·61-s + 0.251·63-s − 64-s − 1.42·71-s + 0.702·73-s − 0.808·75-s + 1/9·81-s − 0.436·84-s − 0.428·87-s + 0.847·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.926392461\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.926392461\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.474357019781163165970864331934, −7.893463375310544986070836175737, −7.64717775810307834107684761356, −7.30383608679715516482480759212, −6.62107654304363600722068227573, −5.90507734663392463514927799475, −5.60328527524921294796493498639, −5.15628820743010086340286347987, −4.49011982263306124172520940094, −4.03703927701628863738367595382, −3.82018858620679634779125359893, −2.99903455583241713754224154253, −2.30027426888824672350698399264, −1.66111190830172932214622271969, −0.71147840329672389227483165322,
0.71147840329672389227483165322, 1.66111190830172932214622271969, 2.30027426888824672350698399264, 2.99903455583241713754224154253, 3.82018858620679634779125359893, 4.03703927701628863738367595382, 4.49011982263306124172520940094, 5.15628820743010086340286347987, 5.60328527524921294796493498639, 5.90507734663392463514927799475, 6.62107654304363600722068227573, 7.30383608679715516482480759212, 7.64717775810307834107684761356, 7.893463375310544986070836175737, 8.474357019781163165970864331934