Dirichlet series
L(s) = 1 | − 2-s − 3-s + 4-s − 2·5-s + 6-s − 2·7-s − 8-s + 2·10-s − 12-s + 4·13-s + 2·14-s + 2·15-s + 16-s − 8·19-s − 2·20-s + 2·21-s + 6·23-s + 24-s + 3·25-s − 4·26-s + 4·27-s − 2·28-s − 2·30-s + 4·31-s − 32-s + 4·35-s + 4·37-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 0.632·10-s − 0.288·12-s + 1.10·13-s + 0.534·14-s + 0.516·15-s + 1/4·16-s − 1.83·19-s − 0.447·20-s + 0.436·21-s + 1.25·23-s + 0.204·24-s + 3/5·25-s − 0.784·26-s + 0.769·27-s − 0.377·28-s − 0.365·30-s + 0.718·31-s − 0.176·32-s + 0.676·35-s + 0.657·37-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(600\) = \(2^{3} \cdot 3 \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(0.0382565\) |
Root analytic conductor: | \(0.442258\) |
Motivic weight: | \(1\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 600,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
\(L(1)\) | \(\approx\) | \(0.2629766483\) |
\(L(\frac12)\) | \(\approx\) | \(0.2629766483\) |
\(L(\frac{3}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$ | $\Gal(F_p)$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
---|---|---|---|---|
bad | 2 | $C_1$ | \( 1 + T \) | |
3 | $C_1$$\times$$C_2$ | \( ( 1 - T )( 1 + 2 T + p T^{2} ) \) | ||
5 | $C_1$ | \( ( 1 + T )^{2} \) | ||
good | 7 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | 2.7.c_g |
11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | 2.11.a_w | |
13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) | 2.13.ae_be | |
17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.17.a_ac | |
19 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) | 2.19.i_cc | |
23 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) | 2.23.ag_bu | |
29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.29.a_w | |
31 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | 2.31.ae_be | |
37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) | 2.37.ae_da | |
41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.41.a_bu | |
43 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | 2.43.o_ew | |
47 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.47.g_dq | |
53 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) | 2.53.m_fm | |
59 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) | 2.59.am_eo | |
61 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | 2.61.i_dy | |
67 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | 2.67.c_ew | |
71 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) | 2.71.m_fm | |
73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) | 2.73.ae_fu | |
79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) | 2.79.aq_io | |
83 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) | 2.83.as_je | |
89 | $C_2$$\times$$C_2$ | \( ( 1 - 18 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.89.am_cs | |
97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) | 2.97.ae_hq | |
show more | ||||
show less |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.6035760866, −19.1626037497, −18.6983747433, −18.1271877078, −17.3081878781, −16.9011141517, −16.0995603957, −16.0225385141, −14.9691010860, −14.7919331095, −13.3351916393, −13.0023664158, −12.1436052702, −11.5085445320, −10.8347395030, −10.3916050944, −9.30558712287, −8.55221755078, −7.94123132226, −6.57891116466, −6.42217617653, −4.78130792718, −3.36585804146, 3.36585804146, 4.78130792718, 6.42217617653, 6.57891116466, 7.94123132226, 8.55221755078, 9.30558712287, 10.3916050944, 10.8347395030, 11.5085445320, 12.1436052702, 13.0023664158, 13.3351916393, 14.7919331095, 14.9691010860, 16.0225385141, 16.0995603957, 16.9011141517, 17.3081878781, 18.1271877078, 18.6983747433, 19.1626037497, 19.6035760866