L(s) = 1 | − 3-s − 4-s + 7-s − 2·9-s + 12-s − 5·13-s + 16-s + 9·19-s − 21-s + 25-s + 5·27-s − 28-s + 2·36-s − 12·37-s + 5·39-s + 7·43-s − 48-s − 6·49-s + 5·52-s − 9·57-s − 7·61-s − 2·63-s − 64-s − 12·67-s − 3·73-s − 75-s − 9·76-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 0.377·7-s − 2/3·9-s + 0.288·12-s − 1.38·13-s + 1/4·16-s + 2.06·19-s − 0.218·21-s + 1/5·25-s + 0.962·27-s − 0.188·28-s + 1/3·36-s − 1.97·37-s + 0.800·39-s + 1.06·43-s − 0.144·48-s − 6/7·49-s + 0.693·52-s − 1.19·57-s − 0.896·61-s − 0.251·63-s − 1/8·64-s − 1.46·67-s − 0.351·73-s − 0.115·75-s − 1.03·76-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.686836190715184505127885609093, −8.104226781334655880930739296202, −7.55152430199211692002423762878, −7.33473662621060057601176881095, −6.77295697427469563403916013078, −6.09473282972611192416641183059, −5.46207567148366667837571545516, −5.35182095006627685856391217041, −4.72361526819582109684734549146, −4.37623146707406366783849450095, −3.23950154977748907776759428969, −3.14061781719437279344983796951, −2.14601114415903561742151833183, −1.16300789867369033865478670026, 0,
1.16300789867369033865478670026, 2.14601114415903561742151833183, 3.14061781719437279344983796951, 3.23950154977748907776759428969, 4.37623146707406366783849450095, 4.72361526819582109684734549146, 5.35182095006627685856391217041, 5.46207567148366667837571545516, 6.09473282972611192416641183059, 6.77295697427469563403916013078, 7.33473662621060057601176881095, 7.55152430199211692002423762878, 8.104226781334655880930739296202, 8.686836190715184505127885609093