Properties

Label 2.61.h_fc
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 + 2 x + 61 x^{2} )( 1 + 5 x + 61 x^{2} )$
  $1 + 7 x + 132 x^{2} + 427 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.540867587811$, $\pm0.603713893500$
Angle rank:  $2$ (numerical)
Jacobians:  $48$
Isomorphism classes:  160

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4288$ $14664960$ $51260535808$ $191590369920000$ $713421316712387008$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $69$ $3937$ $225834$ $13837393$ $844689129$ $51520530022$ $3142737372669$ $191707322495233$ $11694146335634994$ $713342910463187977$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.c $\times$ 1.61.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.ah_fc$2$(not in LMFDB)
2.61.ad_ei$2$(not in LMFDB)
2.61.d_ei$2$(not in LMFDB)