Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 61 x^{2} )( 1 + 5 x + 61 x^{2} )$ |
$1 + 7 x + 132 x^{2} + 427 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.540867587811$, $\pm0.603713893500$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $48$ |
Isomorphism classes: | 160 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4288$ | $14664960$ | $51260535808$ | $191590369920000$ | $713421316712387008$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $69$ | $3937$ | $225834$ | $13837393$ | $844689129$ | $51520530022$ | $3142737372669$ | $191707322495233$ | $11694146335634994$ | $713342910463187977$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=54 x^6+x^5+5 x^4+7 x^3+31 x^2+2 x+29$
- $y^2=55 x^6+7 x^5+31 x^4+51 x^3+10 x^2+28 x+55$
- $y^2=12 x^6+58 x^5+27 x^4+28 x^3+16 x^2+5 x+48$
- $y^2=4 x^6+8 x^5+15 x^4+47 x^3+59 x^2+27 x+59$
- $y^2=33 x^6+30 x^5+19 x^4+32 x^3+57 x^2+42 x+45$
- $y^2=20 x^6+47 x^5+19 x^4+30 x^3+56 x^2+x+19$
- $y^2=25 x^6+25 x^5+39 x^4+51 x^3+9 x^2+59 x+2$
- $y^2=3 x^6+22 x^5+28 x^4+21 x^3+13 x^2+60 x+10$
- $y^2=9 x^6+40 x^5+56 x^4+24 x^3+31 x^2+21 x+20$
- $y^2=60 x^6+56 x^5+11 x^4+34 x^3+39 x^2+54 x+27$
- $y^2=51 x^6+27 x^5+x^4+60 x^3+8 x^2+25 x+35$
- $y^2=43 x^6+45 x^5+9 x^4+50 x^3+42 x^2+25 x+39$
- $y^2=37 x^6+19 x^5+59 x^4+38 x^3+x^2+4 x+25$
- $y^2=57 x^6+10 x^5+36 x^4+45 x^3+57 x^2+39 x+29$
- $y^2=26 x^6+33 x^5+43 x^4+26 x^3+24 x^2+54 x+18$
- $y^2=11 x^6+18 x^5+2 x^4+44 x^3+59 x^2+46 x+34$
- $y^2=57 x^6+46 x^5+21 x^4+22 x^3+19 x^2+9 x+1$
- $y^2=10 x^6+12 x^5+13 x^4+40 x^3+37 x^2+44 x+36$
- $y^2=x^6+50 x^5+59 x^4+31 x^3+46 x^2+14 x+47$
- $y^2=31 x^6+33 x^5+38 x^4+42 x^3+46 x^2+35 x+20$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.c $\times$ 1.61.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ah_fc | $2$ | (not in LMFDB) |
2.61.ad_ei | $2$ | (not in LMFDB) |
2.61.d_ei | $2$ | (not in LMFDB) |