Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 79 x^{2} )( 1 + 11 x + 79 x^{2} )$ |
$1 + 10 x + 147 x^{2} + 790 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.482084212174$, $\pm0.712380201669$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $384$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7189$ | $40179321$ | $242575378864$ | $1517067699208425$ | $9468115313244617029$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $6436$ | $492000$ | $38949028$ | $3077004150$ | $243087743806$ | $19203921107370$ | $1517108694172228$ | $119851595456491680$ | $9468276093526124356$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):
- $y^2=59 x^6+57 x^5+53 x^4+4 x^3+72 x^2+22 x+22$
- $y^2=53 x^6+74 x^5+45 x^4+64 x^3+67 x^2+12 x+6$
- $y^2=23 x^6+33 x^5+7 x^4+54 x^3+33 x^2+8 x+13$
- $y^2=6 x^6+31 x^5+65 x^4+30 x^3+58 x^2+63 x+60$
- $y^2=60 x^6+59 x^5+78 x^4+61 x^3+57 x^2+41 x+25$
- $y^2=30 x^6+25 x^5+42 x^4+17 x^3+2 x^2+31 x+24$
- $y^2=27 x^6+5 x^5+22 x^4+60 x^3+41 x^2+36 x+74$
- $y^2=23 x^6+46 x^5+75 x^4+69 x^3+64 x^2+5 x+59$
- $y^2=3 x^6+24 x^5+69 x^4+63 x^3+34 x^2+2 x+78$
- $y^2=53 x^6+10 x^5+57 x^4+8 x^3+56 x^2+66 x+40$
- $y^2=69 x^6+59 x^5+32 x^4+11 x^3+32 x^2+59 x+69$
- $y^2=67 x^6+18 x^5+32 x^4+33 x^3+47 x^2+55 x+57$
- $y^2=51 x^6+2 x^5+10 x^4+25 x^3+66 x^2+66 x+25$
- $y^2=28 x^6+x^5+31 x^4+69 x^3+60 x^2+72 x+63$
- $y^2=3 x^6+50 x^5+34 x^4+25 x^3+75 x^2+57 x+63$
- $y^2=46 x^6+38 x^5+3 x^4+29 x^3+53 x^2+21 x+14$
- $y^2=3 x^6+45 x^5+40 x^4+72 x^3+40 x^2+45 x+3$
- $y^2=17 x^6+57 x^5+21 x^4+68 x^3+68 x^2+40 x+66$
- $y^2=13 x^6+76 x^5+24 x^4+29 x^3+73 x^2+28 x+55$
- $y^2=36 x^6+42 x^5+60 x^4+8 x^3+54 x^2+50 x+33$
- and 364 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.ab $\times$ 1.79.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.am_gn | $2$ | (not in LMFDB) |
2.79.ak_fr | $2$ | (not in LMFDB) |
2.79.m_gn | $2$ | (not in LMFDB) |