Properties

Label 2.79.k_fr
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 - x + 79 x^{2} )( 1 + 11 x + 79 x^{2} )$
  $1 + 10 x + 147 x^{2} + 790 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.482084212174$, $\pm0.712380201669$
Angle rank:  $2$ (numerical)
Jacobians:  $384$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7189$ $40179321$ $242575378864$ $1517067699208425$ $9468115313244617029$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $6436$ $492000$ $38949028$ $3077004150$ $243087743806$ $19203921107370$ $1517108694172228$ $119851595456491680$ $9468276093526124356$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.ab $\times$ 1.79.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.am_gn$2$(not in LMFDB)
2.79.ak_fr$2$(not in LMFDB)
2.79.m_gn$2$(not in LMFDB)