L(s) = 1 | + 2·3-s − 6·7-s − 9-s + 2·11-s − 6·17-s − 6·19-s − 12·21-s + 6·23-s − 2·25-s − 6·27-s + 6·29-s + 4·33-s + 2·37-s − 6·41-s + 6·43-s − 12·47-s + 15·49-s − 12·51-s − 12·57-s − 6·59-s + 14·61-s + 6·63-s − 18·67-s + 12·69-s + 6·71-s + 8·73-s − 4·75-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 2.26·7-s − 1/3·9-s + 0.603·11-s − 1.45·17-s − 1.37·19-s − 2.61·21-s + 1.25·23-s − 2/5·25-s − 1.15·27-s + 1.11·29-s + 0.696·33-s + 0.328·37-s − 0.937·41-s + 0.914·43-s − 1.75·47-s + 15/7·49-s − 1.68·51-s − 1.58·57-s − 0.781·59-s + 1.79·61-s + 0.755·63-s − 2.19·67-s + 1.44·69-s + 0.712·71-s + 0.936·73-s − 0.461·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29246464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29246464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 13 | | \( 1 \) |
good | 3 | $D_{4}$ | \( 1 - 2 T + 5 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 5 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 7 | $D_{4}$ | \( 1 + 6 T + 3 p T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 11 | $D_{4}$ | \( 1 - 2 T + 5 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 6 T + 35 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 19 | $D_{4}$ | \( 1 + 6 T + 29 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 23 | $D_{4}$ | \( 1 - 6 T + 37 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 - 6 T + 35 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2^2$ | \( 1 + 30 T^{2} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 - 2 T + 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 6 T + 83 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 6 T + 45 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 + 98 T^{2} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 6 T + 109 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 - 7 T + p T^{2} )^{2} \) |
| 67 | $D_{4}$ | \( 1 + 18 T + 197 T^{2} + 18 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 - 6 T + 133 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 - 8 T + 90 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 79 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 89 | $D_{4}$ | \( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} \) |
| 97 | $C_2$ | \( ( 1 + 9 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.017101446729315471401142100435, −7.87817226205003433952809609159, −6.97801848379506627827446212801, −6.88862185089228911593369873000, −6.62594493305869202975504281596, −6.43930058916667015176272063507, −5.85871496758198323548148601866, −5.72034789108625399316460283236, −4.93432526474318105943096375768, −4.63169288849821074974347051267, −4.13896990221499182358350619544, −3.76791580286838541430769164191, −3.36404571879753064701560117660, −3.06122981171608459847492081771, −2.56571046910205261277043273995, −2.49754545051375097154283043208, −1.80268290889182784593386835245, −1.06708543261889983059449495965, 0, 0,
1.06708543261889983059449495965, 1.80268290889182784593386835245, 2.49754545051375097154283043208, 2.56571046910205261277043273995, 3.06122981171608459847492081771, 3.36404571879753064701560117660, 3.76791580286838541430769164191, 4.13896990221499182358350619544, 4.63169288849821074974347051267, 4.93432526474318105943096375768, 5.72034789108625399316460283236, 5.85871496758198323548148601866, 6.43930058916667015176272063507, 6.62594493305869202975504281596, 6.88862185089228911593369873000, 6.97801848379506627827446212801, 7.87817226205003433952809609159, 8.017101446729315471401142100435