L(s) = 1 | + 4-s − 8·7-s + 4·13-s + 16-s − 2·19-s − 25-s − 8·28-s + 4·31-s + 16·37-s − 8·43-s + 34·49-s + 4·52-s + 16·61-s + 64-s − 26·67-s − 14·73-s − 2·76-s − 8·79-s − 32·91-s − 26·97-s − 100-s − 8·103-s − 20·109-s − 8·112-s + 14·121-s + 4·124-s + 127-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 3.02·7-s + 1.10·13-s + 1/4·16-s − 0.458·19-s − 1/5·25-s − 1.51·28-s + 0.718·31-s + 2.63·37-s − 1.21·43-s + 34/7·49-s + 0.554·52-s + 2.04·61-s + 1/8·64-s − 3.17·67-s − 1.63·73-s − 0.229·76-s − 0.900·79-s − 3.35·91-s − 2.63·97-s − 0.0999·100-s − 0.788·103-s − 1.91·109-s − 0.755·112-s + 1.27·121-s + 0.359·124-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 236196 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 236196 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.679568130561498556922581017813, −8.461723979708796657095583439123, −7.73731656802671746427138225950, −7.08955181338173010150793512782, −6.77100901767751662201104029983, −6.32716563151636225311285217480, −5.87454672168208509315529636024, −5.82116351609837137927962809945, −4.60568349400255175327689787418, −3.96642516208177921278290901157, −3.54926944648476867148369691792, −2.77728629591243829342757204382, −2.71135029910568398285484502843, −1.26276179722608830528402176097, 0,
1.26276179722608830528402176097, 2.71135029910568398285484502843, 2.77728629591243829342757204382, 3.54926944648476867148369691792, 3.96642516208177921278290901157, 4.60568349400255175327689787418, 5.82116351609837137927962809945, 5.87454672168208509315529636024, 6.32716563151636225311285217480, 6.77100901767751662201104029983, 7.08955181338173010150793512782, 7.73731656802671746427138225950, 8.461723979708796657095583439123, 8.679568130561498556922581017813