Properties

Label 2.67.ba_lr
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 + 13 x + 67 x^{2} )^{2}$
  $1 + 26 x + 303 x^{2} + 1742 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.792058120679$, $\pm0.792058120679$
Angle rank:  $1$ (numerical)
Jacobians:  $16$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6561$ $19847025$ $90208921104$ $406380241265625$ $1822640918423900481$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $94$ $4420$ $299932$ $20166628$ $1349979274$ $90459239110$ $6060710235982$ $406067637943108$ $27206535003016804$ $1822837799318484100$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.aba_lr$2$(not in LMFDB)
2.67.a_abj$2$(not in LMFDB)
2.67.an_dy$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.aba_lr$2$(not in LMFDB)
2.67.a_abj$2$(not in LMFDB)
2.67.an_dy$3$(not in LMFDB)
2.67.a_bj$4$(not in LMFDB)
2.67.n_dy$6$(not in LMFDB)