Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 13 x + 67 x^{2} )^{2}$ |
$1 + 26 x + 303 x^{2} + 1742 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.792058120679$, $\pm0.792058120679$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $16$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6561$ | $19847025$ | $90208921104$ | $406380241265625$ | $1822640918423900481$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $4420$ | $299932$ | $20166628$ | $1349979274$ | $90459239110$ | $6060710235982$ | $406067637943108$ | $27206535003016804$ | $1822837799318484100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=34 x^6+7 x^5+7 x^4+18 x^3+7 x^2+7 x+34$
- $y^2=59 x^6+61 x^5+7 x^4+31 x^3+40 x^2+54 x+41$
- $y^2=x^6+37 x^3+1$
- $y^2=2 x^6+36 x^5+59 x^4+51 x^3+10 x^2+36 x+8$
- $y^2=62 x^6+14 x^5+3 x^4+42 x^3+3 x^2+14 x+62$
- $y^2=56 x^6+34 x^5+12 x^4+65 x^3+12 x^2+34 x+56$
- $y^2=52 x^6+39 x^5+15 x^4+30 x^3+50 x^2+57 x+11$
- $y^2=36 x^6+9 x^5+41 x^4+60 x^3+41 x^2+9 x+36$
- $y^2=37 x^6+13 x^5+8 x^4+7 x^3+8 x^2+13 x+37$
- $y^2=x^6+x^3+59$
- $y^2=33 x^6+45 x^5+13 x^4+63 x^3+13 x^2+45 x+33$
- $y^2=15 x^6+43 x^5+12 x^4+26 x^3+12 x^2+43 x+15$
- $y^2=44 x^6+12 x^5+21 x^4+19 x^3+21 x^2+12 x+44$
- $y^2=36 x^6+11 x^5+17 x^4+2 x^3+17 x^2+11 x+36$
- $y^2=x^6+x^3+24$
- $y^2=33 x^6+35 x^5+7 x^4+48 x^3+43 x^2+19 x+62$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.