L(s) = 1 | + 4-s + 4·7-s + 9-s − 4·11-s + 16-s − 2·25-s + 4·28-s + 16·29-s + 36-s − 12·37-s − 16·43-s − 4·44-s + 9·49-s + 20·53-s + 4·63-s + 64-s + 8·67-s + 24·71-s − 16·77-s + 8·79-s + 81-s − 4·99-s − 2·100-s + 16·107-s + 8·109-s + 4·112-s − 4·113-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 1.51·7-s + 1/3·9-s − 1.20·11-s + 1/4·16-s − 2/5·25-s + 0.755·28-s + 2.97·29-s + 1/6·36-s − 1.97·37-s − 2.43·43-s − 0.603·44-s + 9/7·49-s + 2.74·53-s + 0.503·63-s + 1/8·64-s + 0.977·67-s + 2.84·71-s − 1.82·77-s + 0.900·79-s + 1/9·81-s − 0.402·99-s − 1/5·100-s + 1.54·107-s + 0.766·109-s + 0.377·112-s − 0.376·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.293336294\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.293336294\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.665096863199730193528536428999, −8.524253019447863055235997230797, −8.188769389892575152529270937218, −7.70217273809722583435498987335, −7.12672404077327727776261554757, −6.74185961184153339193775662900, −6.23969165149518831172612641577, −5.32403103939328504554919900736, −5.09911818009051704782014362269, −4.78243254016688788309840525166, −3.92529785180152174014596626593, −3.28705613589508262967439884468, −2.41205735758110562376113309934, −1.99746960372604892155109398017, −1.00441622224102862653037289833,
1.00441622224102862653037289833, 1.99746960372604892155109398017, 2.41205735758110562376113309934, 3.28705613589508262967439884468, 3.92529785180152174014596626593, 4.78243254016688788309840525166, 5.09911818009051704782014362269, 5.32403103939328504554919900736, 6.23969165149518831172612641577, 6.74185961184153339193775662900, 7.12672404077327727776261554757, 7.70217273809722583435498987335, 8.188769389892575152529270937218, 8.524253019447863055235997230797, 8.665096863199730193528536428999