Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 53 x^{2} )( 1 - 6 x + 53 x^{2} )$ |
$1 - 20 x + 190 x^{2} - 1060 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.0885855327829$, $\pm0.364801829573$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $72$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1920$ | $7833600$ | $22197029760$ | $62245785600000$ | $174869865425481600$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $2790$ | $149098$ | $7888718$ | $418153394$ | $22164143670$ | $1174712301818$ | $62259715297438$ | $3299763756498754$ | $174887470773634950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=7 x^6+2 x^5+14 x^4+39 x^3+14 x^2+2 x+7$
- $y^2=5 x^6+30 x^5+18 x^4+8 x^3+19 x^2+38 x+36$
- $y^2=10 x^6+9 x^5+15 x^4+9 x^3+26 x^2+50 x+19$
- $y^2=3 x^6+39 x^5+38 x^3+20 x+8$
- $y^2=19 x^6+37 x^5+35 x^3+38 x+33$
- $y^2=14 x^6+52 x^5+11 x^4+8 x^3+11 x^2+3 x+27$
- $y^2=39 x^6+30 x^5+15 x^4+49 x^3+8 x^2+x+31$
- $y^2=23 x^6+11 x^5+49 x^4+x^3+48 x^2+38 x+26$
- $y^2=48 x^6+30 x^5+18 x^4+32 x^3+26 x^2+45 x+18$
- $y^2=51 x^6+22 x^5+37 x^4+34 x^3+16 x+23$
- $y^2=8 x^6+15 x^5+40 x^4+17 x^3+50 x^2+6 x+12$
- $y^2=23 x^6+6 x^5+11 x^4+33 x^3+12 x^2+10 x+50$
- $y^2=18 x^6+12 x^5+33 x^4+14 x^3+16 x^2+20 x+32$
- $y^2=50 x^6+4 x^5+37 x^4+4 x^3+13 x^2+2 x+19$
- $y^2=3 x^6+42 x^5+18 x^4+27 x^3+29 x^2+48 x+41$
- $y^2=21 x^6+23 x^5+11 x^4+35 x^3+18 x^2+4 x+20$
- $y^2=21 x^6+51 x^5+13 x^4+38 x^3+52 x^2+24 x+30$
- $y^2=2 x^6+6 x^5+13 x^4+38 x^3+13 x^2+6 x+2$
- $y^2=49 x^6+50 x^5+44 x^4+44 x^3+6 x^2+34 x+11$
- $y^2=3 x^6+6 x^5+15 x^4+18 x^3+x^2+29 x+31$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ao $\times$ 1.53.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.