| L(s) = 1 | + 4·7-s + 2·9-s + 4·11-s − 8·23-s + 2·25-s − 4·29-s − 4·37-s + 4·43-s + 9·49-s + 12·53-s + 8·63-s + 12·67-s + 8·71-s + 16·77-s + 16·79-s − 5·81-s + 8·99-s + 4·107-s − 4·109-s − 12·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
| L(s) = 1 | + 1.51·7-s + 2/3·9-s + 1.20·11-s − 1.66·23-s + 2/5·25-s − 0.742·29-s − 0.657·37-s + 0.609·43-s + 9/7·49-s + 1.64·53-s + 1.00·63-s + 1.46·67-s + 0.949·71-s + 1.82·77-s + 1.80·79-s − 5/9·81-s + 0.804·99-s + 0.386·107-s − 0.383·109-s − 1.12·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.329195233\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.329195233\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.011530917577971838679640259715, −8.613276852452012119087367726350, −8.121618991769280190033617141191, −7.69506373849898615837060537622, −7.26477051048943201028761904628, −6.65843415608608869717599728348, −6.27898075727928037077278809923, −5.46912232568141088593189111437, −5.19300823978676382926111286843, −4.42492522923214735887745097890, −3.98806710161747150010342947178, −3.64128701932627348216621737358, −2.37072722824809261902536430418, −1.84326165403814571098871892320, −1.08973477197510465215355246143,
1.08973477197510465215355246143, 1.84326165403814571098871892320, 2.37072722824809261902536430418, 3.64128701932627348216621737358, 3.98806710161747150010342947178, 4.42492522923214735887745097890, 5.19300823978676382926111286843, 5.46912232568141088593189111437, 6.27898075727928037077278809923, 6.65843415608608869717599728348, 7.26477051048943201028761904628, 7.69506373849898615837060537622, 8.121618991769280190033617141191, 8.613276852452012119087367726350, 9.011530917577971838679640259715