Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 67 x^{2} )( 1 - 4 x + 67 x^{2} )$ |
| $1 - 12 x + 166 x^{2} - 804 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.337479373807$, $\pm0.421429069538$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $180$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3840$ | $21012480$ | $91011997440$ | $406050206515200$ | $1822689064099219200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $4678$ | $302600$ | $20150254$ | $1350014936$ | $90457836406$ | $6060714405032$ | $406067717068126$ | $27206534461449080$ | $1822837803475604518$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=13 x^6+32 x^5+59 x^4+29 x^3+59 x^2+32 x+13$
- $y^2=52 x^6+x^5+29 x^4+39 x^3+29 x^2+x+52$
- $y^2=3 x^6+18 x^5+41 x^4+35 x^3+43 x^2+53 x+3$
- $y^2=5 x^6+58 x^5+39 x^4+42 x^3+54 x^2+27 x+45$
- $y^2=25 x^5+32 x^4+64 x^3+32 x^2+25 x$
- $y^2=12 x^6+44 x^5+2 x^4+32 x^3+11 x^2+58 x+20$
- $y^2=x^6+38 x^5+13 x^4+40 x^3+13 x^2+38 x+1$
- $y^2=52 x^6+44 x^5+9 x^4+41 x^3+49 x^2+42 x+53$
- $y^2=14 x^6+21 x^5+62 x^4+50 x^3+65 x^2+60 x+38$
- $y^2=10 x^6+22 x^5+5 x^4+39 x^3+20 x^2+41 x+19$
- $y^2=31 x^6+19 x^5+21 x^4+18 x^3+21 x^2+19 x+31$
- $y^2=55 x^6+9 x^5+10 x^4+20 x^3+10 x^2+9 x+55$
- $y^2=30 x^6+14 x^5+48 x^4+54 x^3+48 x^2+14 x+30$
- $y^2=38 x^6+56 x^5+10 x^4+52 x^3+10 x^2+56 x+38$
- $y^2=64 x^6+24 x^5+43 x^4+15 x^3+52 x^2+x+24$
- $y^2=2 x^6+19 x^5+59 x^4+18 x^3+25 x^2+17 x+57$
- $y^2=37 x^6+12 x^5+10 x^4+9 x^3+10 x^2+12 x+37$
- $y^2=27 x^6+35 x^5+43 x^4+66 x^3+43 x^2+35 x+27$
- $y^2=23 x^6+29 x^5+26 x^4+61 x^3+26 x^2+29 x+23$
- $y^2=36 x^6+10 x^5+60 x^4+13 x^3+4 x^2+66 x+25$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.ai $\times$ 1.67.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.ae_dy | $2$ | (not in LMFDB) |
| 2.67.e_dy | $2$ | (not in LMFDB) |
| 2.67.m_gk | $2$ | (not in LMFDB) |