L(s) = 1 | − 4·5-s − 9-s + 4·11-s + 8·19-s + 11·25-s − 8·41-s + 4·45-s − 2·49-s − 16·55-s − 12·61-s + 28·71-s + 24·79-s + 81-s + 12·89-s − 32·95-s − 4·99-s + 36·101-s + 28·109-s − 10·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 1/3·9-s + 1.20·11-s + 1.83·19-s + 11/5·25-s − 1.24·41-s + 0.596·45-s − 2/7·49-s − 2.15·55-s − 1.53·61-s + 3.32·71-s + 2.70·79-s + 1/9·81-s + 1.27·89-s − 3.28·95-s − 0.402·99-s + 3.58·101-s + 2.68·109-s − 0.909·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.230063825\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.230063825\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.456655380178006661305438056661, −8.312652414596324046369567633254, −7.69963161463794043404834309220, −7.69139832716121545605024819687, −7.18223850569773842799299829895, −6.93899423123143280815450997270, −6.38031687293512113141813939546, −6.22888030897461407755667160101, −5.64793081877995870388921830321, −4.99481368616522063719303160031, −4.87336352452533502553195851085, −4.58370893399363191322991856015, −3.73851389650504173593690128698, −3.65384864577707607386444782508, −3.39571806270551857018146246758, −2.97113872924937310279157185769, −2.19819011078181399641697313788, −1.66005613079495279951556790065, −0.811320748992372361741001669583, −0.62355283679895436373638912105,
0.62355283679895436373638912105, 0.811320748992372361741001669583, 1.66005613079495279951556790065, 2.19819011078181399641697313788, 2.97113872924937310279157185769, 3.39571806270551857018146246758, 3.65384864577707607386444782508, 3.73851389650504173593690128698, 4.58370893399363191322991856015, 4.87336352452533502553195851085, 4.99481368616522063719303160031, 5.64793081877995870388921830321, 6.22888030897461407755667160101, 6.38031687293512113141813939546, 6.93899423123143280815450997270, 7.18223850569773842799299829895, 7.69139832716121545605024819687, 7.69963161463794043404834309220, 8.312652414596324046369567633254, 8.456655380178006661305438056661