| L(s) = 1 | − 3-s + 3·5-s − 4·7-s + 3·9-s − 3·11-s + 2·13-s − 3·15-s − 3·17-s − 5·19-s + 4·21-s + 9·23-s + 5·25-s − 8·27-s − 12·29-s + 31-s + 3·33-s − 12·35-s + 7·37-s − 2·39-s + 12·41-s + 16·43-s + 9·45-s + 3·47-s + 9·49-s + 3·51-s + 9·53-s − 9·55-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1.34·5-s − 1.51·7-s + 9-s − 0.904·11-s + 0.554·13-s − 0.774·15-s − 0.727·17-s − 1.14·19-s + 0.872·21-s + 1.87·23-s + 25-s − 1.53·27-s − 2.22·29-s + 0.179·31-s + 0.522·33-s − 2.02·35-s + 1.15·37-s − 0.320·39-s + 1.87·41-s + 2.43·43-s + 1.34·45-s + 0.437·47-s + 9/7·49-s + 0.420·51-s + 1.23·53-s − 1.21·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.323855984\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.323855984\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26495528194578218750630804751, −11.11112917093124904531287173862, −10.86674333680401948221816533408, −10.13697613796260715727684269978, −9.918709980197902933394250842318, −9.385886066757878091422732086829, −9.055015225537876847418070447786, −8.732470797631734100857150863621, −7.64915161171656918253164173594, −7.25866500464301775145806264114, −6.92793761986758153809297199879, −6.05090578804677772670637098430, −5.99114482014397103010466644691, −5.62568345168574327299096182741, −4.75347023712293927990321445705, −4.15557552790868017060073521305, −3.53125869113708898095507178894, −2.49920421661630549385620254954, −2.19820704604892823547842425019, −0.822400897861456104223111575487,
0.822400897861456104223111575487, 2.19820704604892823547842425019, 2.49920421661630549385620254954, 3.53125869113708898095507178894, 4.15557552790868017060073521305, 4.75347023712293927990321445705, 5.62568345168574327299096182741, 5.99114482014397103010466644691, 6.05090578804677772670637098430, 6.92793761986758153809297199879, 7.25866500464301775145806264114, 7.64915161171656918253164173594, 8.732470797631734100857150863621, 9.055015225537876847418070447786, 9.385886066757878091422732086829, 9.918709980197902933394250842318, 10.13697613796260715727684269978, 10.86674333680401948221816533408, 11.11112917093124904531287173862, 11.26495528194578218750630804751