L(s) = 1 | − 2·2-s + 2·4-s − 4·5-s + 7-s − 4·8-s + 8·10-s − 2·11-s − 7·13-s − 2·14-s + 8·16-s − 4·17-s − 3·19-s − 8·20-s + 4·22-s + 6·23-s + 2·25-s + 14·26-s + 2·28-s − 4·29-s − 10·31-s − 8·32-s + 8·34-s − 4·35-s − 7·37-s + 6·38-s + 16·40-s + 6·41-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 1.78·5-s + 0.377·7-s − 1.41·8-s + 2.52·10-s − 0.603·11-s − 1.94·13-s − 0.534·14-s + 2·16-s − 0.970·17-s − 0.688·19-s − 1.78·20-s + 0.852·22-s + 1.25·23-s + 2/5·25-s + 2.74·26-s + 0.377·28-s − 0.742·29-s − 1.79·31-s − 1.41·32-s + 1.37·34-s − 0.676·35-s − 1.15·37-s + 0.973·38-s + 2.52·40-s + 0.937·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23929147779686842114946259679, −11.01506990538639655317233415465, −10.04927701558911797147737260933, −9.999655599652062749354586337855, −9.130026131790274782265772119627, −9.048696869156015434212847021671, −8.356586101532081295465464597177, −8.145477263238536082348213180195, −7.37157747022370287708577472595, −7.30780785495269611010069047714, −6.96366518931557363759223304398, −5.83535335045190574463888569713, −5.48023155938879234702754389777, −4.54273296193659099197143339155, −4.25686797473206717732428116321, −3.30216815333986900977104981674, −2.75066570718911401042078896995, −1.84453241696011185893081113645, 0, 0,
1.84453241696011185893081113645, 2.75066570718911401042078896995, 3.30216815333986900977104981674, 4.25686797473206717732428116321, 4.54273296193659099197143339155, 5.48023155938879234702754389777, 5.83535335045190574463888569713, 6.96366518931557363759223304398, 7.30780785495269611010069047714, 7.37157747022370287708577472595, 8.145477263238536082348213180195, 8.356586101532081295465464597177, 9.048696869156015434212847021671, 9.130026131790274782265772119627, 9.999655599652062749354586337855, 10.04927701558911797147737260933, 11.01506990538639655317233415465, 11.23929147779686842114946259679