Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 5 x + 31 x^{2} )^{2}$ |
| $1 + 10 x + 87 x^{2} + 310 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.648224405710$, $\pm0.648224405710$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $16$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1369$ | $998001$ | $867420304$ | $853914605625$ | $820073588003329$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1036$ | $29112$ | $924628$ | $28644702$ | $887391646$ | $27512692242$ | $852894119908$ | $26439604326312$ | $819628280596156$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=3 x^6+21 x^3+6$
- $y^2=17 x^6+27 x^5+4 x^4+7 x^3+4 x^2+27 x+17$
- $y^2=29 x^6+2 x^5+18 x^4+13 x^3+29 x^2+11 x+17$
- $y^2=9 x^6+11 x^5+27 x^4+24 x^3+27 x^2+11 x+9$
- $y^2=16 x^6+12 x^5+27 x^4+19 x^3+27 x^2+12 x+16$
- $y^2=3 x^6+13 x^3+3$
- $y^2=3 x^6+3 x^3+3$
- $y^2=7 x^6+20 x^5+25 x^4+7 x^3+25 x^2+20 x+7$
- $y^2=3 x^6+2 x^5+10 x^4+29 x^3+27 x^2+9$
- $y^2=21 x^6+8 x^5+25 x^4+23 x^3+25 x^2+8 x+21$
- $y^2=16 x^6+15 x^5+15 x^4+11 x^3+22 x^2+24 x+18$
- $y^2=18 x^6+25 x^5+11 x^4+5 x^3+11 x^2+25 x+18$
- $y^2=26 x^6+7 x^5+4 x^4+23 x^3+4 x^2+7 x+26$
- $y^2=22 x^6+13 x^5+5 x^4+22 x^3+5 x^2+13 x+22$
- $y^2=9 x^6+22 x^5+23 x^4+26 x^3+24 x^2+16 x+5$
- $y^2=30 x^6+5 x^5+2 x^4+27 x^3+2 x^2+5 x+30$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.