L(s) = 1 | + 2·4-s + 7-s + 5·13-s + 19-s − 10·25-s + 2·28-s + 22·31-s + 37-s − 5·43-s + 7·49-s + 10·52-s − 14·61-s − 8·64-s + 16·67-s − 20·73-s + 2·76-s − 8·79-s + 5·91-s − 14·97-s − 20·100-s − 26·103-s + 34·109-s + 11·121-s + 44·124-s + 127-s + 131-s + 133-s + ⋯ |
L(s) = 1 | + 4-s + 0.377·7-s + 1.38·13-s + 0.229·19-s − 2·25-s + 0.377·28-s + 3.95·31-s + 0.164·37-s − 0.762·43-s + 49-s + 1.38·52-s − 1.79·61-s − 64-s + 1.95·67-s − 2.34·73-s + 0.229·76-s − 0.900·79-s + 0.524·91-s − 1.42·97-s − 2·100-s − 2.56·103-s + 3.25·109-s + 121-s + 3.95·124-s + 0.0887·127-s + 0.0873·131-s + 0.0867·133-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.258013812\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.258013812\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72994900794972896813416929985, −11.25676899997015512880344279746, −10.93801442923165363108391144313, −10.39902513649918227290104549305, −9.759136078445770395785699030573, −9.751948866369155556987821554001, −8.642136421872789978466293635967, −8.499155206088973980616231500213, −7.974764320598132063965579275233, −7.49308654997480279322648289931, −6.86787480392456193785976295392, −6.39123393806874710010754111298, −5.98276939554094889992622433913, −5.58790945103634883965906037079, −4.47364420962004874604194255273, −4.36099563197412917962413937700, −3.35792346327736903891873731284, −2.78346195967315798779579267712, −1.99739779454235381778313161050, −1.16850586335834871646812771678,
1.16850586335834871646812771678, 1.99739779454235381778313161050, 2.78346195967315798779579267712, 3.35792346327736903891873731284, 4.36099563197412917962413937700, 4.47364420962004874604194255273, 5.58790945103634883965906037079, 5.98276939554094889992622433913, 6.39123393806874710010754111298, 6.86787480392456193785976295392, 7.49308654997480279322648289931, 7.974764320598132063965579275233, 8.499155206088973980616231500213, 8.642136421872789978466293635967, 9.751948866369155556987821554001, 9.759136078445770395785699030573, 10.39902513649918227290104549305, 10.93801442923165363108391144313, 11.25676899997015512880344279746, 11.72994900794972896813416929985