| L(s) = 1 | + 3-s + 9-s + 11-s + 7·13-s + 10·23-s − 25-s + 27-s + 33-s − 7·37-s + 7·39-s + 22·47-s + 49-s − 5·59-s + 61-s + 10·69-s − 18·71-s − 18·73-s − 75-s + 81-s − 83-s − 7·97-s + 99-s + 15·107-s − 15·109-s − 7·111-s + 7·117-s − 15·121-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s + 0.301·11-s + 1.94·13-s + 2.08·23-s − 1/5·25-s + 0.192·27-s + 0.174·33-s − 1.15·37-s + 1.12·39-s + 3.20·47-s + 1/7·49-s − 0.650·59-s + 0.128·61-s + 1.20·69-s − 2.13·71-s − 2.10·73-s − 0.115·75-s + 1/9·81-s − 0.109·83-s − 0.710·97-s + 0.100·99-s + 1.45·107-s − 1.43·109-s − 0.664·111-s + 0.647·117-s − 1.36·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.752587289\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.752587289\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.701345258628524799493502891276, −8.579606686909254369339383987202, −7.85115845474126817890955824277, −7.19855738149753283316587676438, −7.12554901525322288267898176274, −6.42957037120311725068238678708, −5.83624567592269771620558714493, −5.58456053521090848271576483985, −4.77365493929464278344570379723, −4.20737628930419033341751170217, −3.75195049695565634703421883124, −3.14563115731238966789018383698, −2.66441852233658563658560463972, −1.61496031156866813415951111125, −1.04300274911208976300053555547,
1.04300274911208976300053555547, 1.61496031156866813415951111125, 2.66441852233658563658560463972, 3.14563115731238966789018383698, 3.75195049695565634703421883124, 4.20737628930419033341751170217, 4.77365493929464278344570379723, 5.58456053521090848271576483985, 5.83624567592269771620558714493, 6.42957037120311725068238678708, 7.12554901525322288267898176274, 7.19855738149753283316587676438, 7.85115845474126817890955824277, 8.579606686909254369339383987202, 8.701345258628524799493502891276