Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 73 x^{2} )( 1 + 16 x + 73 x^{2} )$ |
| $1 + 18 x + 178 x^{2} + 1314 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.537340940774$, $\pm0.885799748780$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $240$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6840$ | $28563840$ | $151397770680$ | $806149258444800$ | $4297688559834694200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $92$ | $5362$ | $389180$ | $28387294$ | $2073101852$ | $151335246994$ | $11047388282876$ | $806460113043646$ | $58871586647173340$ | $4297625835049701682$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):
- $y^2=60 x^6+8 x^5+22 x^4+34 x^3+64 x^2+67 x+35$
- $y^2=56 x^6+10 x^5+29 x^4+47 x^3+13 x+62$
- $y^2=57 x^6+29 x^5+72 x^4+57 x^3+72 x^2+29 x+57$
- $y^2=9 x^6+43 x^5+37 x^4+33 x^3+9 x^2+62 x+1$
- $y^2=64 x^6+46 x^5+39 x^4+11 x^3+66 x^2+19 x+65$
- $y^2=57 x^6+54 x^5+58 x^4+43 x^2+51 x+26$
- $y^2=35 x^6+36 x^5+5 x^4+71 x^3+49 x^2+55 x+1$
- $y^2=61 x^6+20 x^5+57 x^4+58 x^3+57 x^2+20 x+61$
- $y^2=71 x^6+27 x^5+44 x^4+43 x^3+10 x^2+64 x+55$
- $y^2=61 x^6+53 x^5+24 x^4+2 x^3+5 x^2+45 x+65$
- $y^2=70 x^6+11 x^5+31 x^4+49 x^3+51 x^2+30 x+27$
- $y^2=61 x^5+28 x^4+53 x^3+37 x^2+19 x+48$
- $y^2=43 x^6+19 x^5+26 x^4+24 x^3+10 x^2+64 x+37$
- $y^2=38 x^6+4 x^5+54 x^3+10 x^2+58 x+37$
- $y^2=27 x^6+28 x^5+51 x^4+49 x^3+41 x^2+34 x+70$
- $y^2=6 x^6+34 x^5+62 x^4+66 x^3+14 x^2+60 x+50$
- $y^2=44 x^6+3 x^5+47 x^4+9 x^3+18 x^2+49 x+65$
- $y^2=16 x^6+25 x^5+3 x^4+46 x^3+11 x^2+43 x+2$
- $y^2=16 x^6+52 x^5+64 x^4+36 x^3+17 x^2+17 x+18$
- $y^2=44 x^6+43 x^5+26 x^4+45 x^3+16 x^2+19 x+13$
- and 220 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.c $\times$ 1.73.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.