-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6840, 'abvar_counts': [6840, 28563840, 151397770680, 806149258444800, 4297688559834694200, 22902202514496644576640, 122044900956171050817839160, 650377896874088674202261913600, 3465863717952372607020847330778040, 18469587795110918986401005258803363200], 'abvar_counts_str': '6840 28563840 151397770680 806149258444800 4297688559834694200 22902202514496644576640 122044900956171050817839160 650377896874088674202261913600 3465863717952372607020847330778040 18469587795110918986401005258803363200 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.537340940774275, 0.885799748780092], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 92, 'curve_counts': [92, 5362, 389180, 28387294, 2073101852, 151335246994, 11047388282876, 806460113043646, 58871586647173340, 4297625835049701682], 'curve_counts_str': '92 5362 389180 28387294 2073101852 151335246994 11047388282876 806460113043646 58871586647173340 4297625835049701682 ', 'curves': ['y^2=60*x^6+8*x^5+22*x^4+34*x^3+64*x^2+67*x+35', 'y^2=56*x^6+10*x^5+29*x^4+47*x^3+13*x+62', 'y^2=57*x^6+29*x^5+72*x^4+57*x^3+72*x^2+29*x+57', 'y^2=9*x^6+43*x^5+37*x^4+33*x^3+9*x^2+62*x+1', 'y^2=64*x^6+46*x^5+39*x^4+11*x^3+66*x^2+19*x+65', 'y^2=57*x^6+54*x^5+58*x^4+43*x^2+51*x+26', 'y^2=35*x^6+36*x^5+5*x^4+71*x^3+49*x^2+55*x+1', 'y^2=61*x^6+20*x^5+57*x^4+58*x^3+57*x^2+20*x+61', 'y^2=71*x^6+27*x^5+44*x^4+43*x^3+10*x^2+64*x+55', 'y^2=61*x^6+53*x^5+24*x^4+2*x^3+5*x^2+45*x+65', 'y^2=70*x^6+11*x^5+31*x^4+49*x^3+51*x^2+30*x+27', 'y^2=61*x^5+28*x^4+53*x^3+37*x^2+19*x+48', 'y^2=43*x^6+19*x^5+26*x^4+24*x^3+10*x^2+64*x+37', 'y^2=38*x^6+4*x^5+54*x^3+10*x^2+58*x+37', 'y^2=27*x^6+28*x^5+51*x^4+49*x^3+41*x^2+34*x+70', 'y^2=6*x^6+34*x^5+62*x^4+66*x^3+14*x^2+60*x+50', 'y^2=44*x^6+3*x^5+47*x^4+9*x^3+18*x^2+49*x+65', 'y^2=16*x^6+25*x^5+3*x^4+46*x^3+11*x^2+43*x+2', 'y^2=16*x^6+52*x^5+64*x^4+36*x^3+17*x^2+17*x+18', 'y^2=44*x^6+43*x^5+26*x^4+45*x^3+16*x^2+19*x+13', 'y^2=43*x^6+41*x^5+60*x^4+15*x^3+51*x^2+9*x+22', 'y^2=64*x^6+51*x^5+62*x^4+47*x^3+36*x^2+33*x+4', 'y^2=18*x^6+60*x^5+39*x^4+49*x^3+24*x^2+10*x+36', 'y^2=49*x^6+41*x^5+28*x^4+65*x^3+34*x^2+65*x+55', 'y^2=2*x^6+29*x^5+71*x^4+16*x^3+6*x^2+37*x+49', 'y^2=14*x^6+19*x^5+57*x^4+31*x^3+14*x^2+33*x+61', 'y^2=23*x^6+64*x^5+39*x^4+22*x^3+54*x^2+38*x+70', 'y^2=48*x^6+39*x^5+34*x^4+69*x^3+23*x^2+18*x+5', 'y^2=44*x^6+33*x^5+70*x^4+53*x^3+69*x^2+32*x+66', 'y^2=27*x^6+8*x^5+36*x^4+32*x^3+21*x^2+61*x+40', 'y^2=8*x^6+37*x^5+71*x^4+35*x^3+48*x^2+52*x+69', 'y^2=41*x^6+26*x^5+69*x^4+18*x^3+54*x^2+22*x+53', 'y^2=50*x^6+21*x^5+21*x^4+69*x^3+55*x^2+30*x+68', 'y^2=68*x^6+22*x^5+17*x^4+36*x^3+50*x^2+41*x+56', 'y^2=65*x^6+60*x^5+44*x^4+24*x^3+17*x^2+51*x+57', 'y^2=21*x^6+47*x^5+28*x^4+44*x^3+48*x^2+5*x+51', 'y^2=8*x^6+13*x^5+53*x^4+35*x^3+44*x^2+60*x+1', 'y^2=x^6+25*x^5+58*x^4+43*x^3+12*x^2+11*x+53', 'y^2=8*x^6+22*x^5+15*x^4+44*x^3+15*x^2+22*x+8', 'y^2=28*x^6+72*x^5+59*x^4+45*x^3+41*x^2+4*x+29', 'y^2=24*x^6+21*x^5+47*x^4+56*x^3+51*x^2+26*x+58', 'y^2=60*x^6+20*x^5+32*x^4+44*x^3+66*x^2+14*x+59', 'y^2=42*x^5+44*x^4+3*x^3+51*x^2+6*x+42', 'y^2=2*x^6+11*x^5+20*x^4+58*x^3+15*x^2+35*x+2', 'y^2=9*x^6+31*x^5+43*x^4+39*x^3+70*x^2+32*x+27', 'y^2=68*x^6+23*x^5+10*x^4+47*x^3+18*x^2+44*x+1', 'y^2=16*x^6+10*x^5+25*x^4+3*x^3+25*x^2+10*x+16', 'y^2=38*x^6+43*x^5+32*x^4+39*x^3+40*x^2+36*x+24', 'y^2=69*x^6+3*x^5+56*x^4+63*x^3+68*x^2+27*x+64', 'y^2=57*x^6+46*x^5+25*x^4+2*x^3+25*x^2+46*x+57', 'y^2=54*x^6+71*x^5+35*x^4+12*x^3+54*x^2+15*x+46', 'y^2=53*x^6+47*x^5+57*x^4+38*x^3+23*x^2+47*x+24', 'y^2=19*x^6+43*x^5+65*x^4+56*x^3+65*x^2+43*x+19', 'y^2=50*x^6+15*x^5+4*x^4+71*x^3+26*x^2+52*x+3', 'y^2=61*x^6+33*x^5+14*x^4+19*x^3+3*x^2+22*x+28', 'y^2=6*x^6+43*x^5+18*x^4+51*x^2+61*x+50', 'y^2=7*x^6+15*x^5+27*x^4+23*x^3+27*x^2+15*x+7', 'y^2=53*x^6+36*x^5+69*x^4+50*x^3+68*x^2+34*x+8', 'y^2=53*x^6+18*x^5+55*x^4+47*x^3+68*x^2+30*x+66', 'y^2=37*x^6+35*x^5+68*x^4+52*x^3+62*x^2+38*x+50', 'y^2=71*x^6+42*x^5+32*x^4+39*x^3+37*x^2+54*x+16', 'y^2=8*x^6+55*x^5+66*x^4+29*x^3+28*x^2+46*x+15', 'y^2=19*x^6+49*x^5+42*x^4+52*x^3+30*x^2+54*x+20', 'y^2=35*x^6+62*x^5+45*x^4+62*x^3+70*x^2+18*x+6', 'y^2=66*x^6+5*x^5+59*x^4+6*x^3+64*x^2+33*x+40', 'y^2=66*x^6+61*x^5+16*x^4+34*x^3+52*x+32', 'y^2=66*x^6+72*x^5+42*x^4+6*x^3+60*x^2+65*x+66', 'y^2=71*x^6+9*x^5+57*x^4+60*x^3+65*x^2+24*x+3', 'y^2=23*x^6+23*x^5+27*x^4+34*x^3+54*x^2+42*x+48', 'y^2=31*x^6+10*x^5+67*x^4+33*x^3+67*x^2+51*x+57', 'y^2=12*x^6+40*x^5+11*x^4+44*x^3+48*x^2+63*x+27', 'y^2=45*x^6+23*x^5+7*x^4+46*x^3+25*x^2+23*x+27', 'y^2=2*x^6+57*x^5+32*x^4+10*x^3+32*x^2+57*x+2', 'y^2=38*x^6+71*x^5+42*x^4+2*x^3+46*x^2+23*x+61', 'y^2=38*x^6+48*x^5+32*x^4+68*x^3+43*x^2+52*x+38', 'y^2=51*x^6+60*x^5+13*x^4+34*x^3+47*x^2+21*x+30', 'y^2=33*x^6+68*x^5+43*x^4+25*x^3+46*x^2+26*x+63', 'y^2=65*x^6+16*x^5+40*x^4+70*x^3+45*x^2+44*x+15', 'y^2=17*x^6+6*x^5+10*x^4+48*x^3+18*x^2+60*x+69', 'y^2=34*x^6+25*x^5+67*x^4+12*x^3+54*x^2+70*x+35', 'y^2=64*x^6+56*x^5+57*x^4+35*x^3+57*x^2+56*x+64', 'y^2=57*x^6+16*x^5+65*x^4+64*x^3+56*x^2+4*x+7', 'y^2=26*x^6+10*x^5+29*x^4+10*x^3+x^2+23*x+48', 'y^2=13*x^6+19*x^5+61*x^4+34*x^3+69*x^2+65*x+21', 'y^2=40*x^6+x^5+8*x^4+20*x^3+56*x^2+72*x+41', 'y^2=x^6+4*x^5+x^4+22*x^3+45*x^2+41*x+12', 'y^2=52*x^6+35*x^5+63*x^4+37*x^3+12*x^2+13*x+12', 'y^2=14*x^6+28*x^5+47*x^4+46*x^3+12*x^2+34*x+38', 'y^2=72*x^6+20*x^5+63*x^4+13*x^3+x^2+68*x+30', 'y^2=39*x^6+59*x^5+x^4+36*x^3+35*x^2+52*x+58', 'y^2=22*x^6+8*x^5+23*x^4+49*x^3+67*x^2+2*x+52', 'y^2=69*x^6+24*x^5+11*x^4+27*x^3+63*x^2+50*x+12', 'y^2=23*x^6+61*x^5+26*x^4+52*x^3+66*x^2+68*x+54', 'y^2=46*x^6+67*x^5+36*x^4+38*x^3+36*x^2+67*x+46', 'y^2=58*x^6+29*x^5+60*x^4+10*x^3+59*x^2+16*x+35', 'y^2=23*x^6+66*x^5+4*x^4+47*x^3+21*x^2+25*x+38', 'y^2=61*x^6+29*x^5+11*x^4+20*x^3+11*x^2+29*x+61', 'y^2=16*x^6+55*x^5+28*x^4+45*x^3+11*x^2+29*x+23', 'y^2=52*x^6+45*x^5+57*x^4+21*x^3+2*x^2+68*x+21', 'y^2=24*x^6+45*x^5+41*x^4+4*x^3+66*x^2+4*x+55', 'y^2=5*x^6+58*x^5+13*x^4+x^3+39*x^2+48*x+56', 'y^2=37*x^6+62*x^5+52*x^4+10*x^3+26*x^2+33*x+51', 'y^2=36*x^6+67*x^5+19*x^4+21*x^3+29*x^2+21*x+27', 'y^2=51*x^6+25*x^5+34*x^4+49*x^3+5*x^2+61*x+45', 'y^2=28*x^6+58*x^5+13*x^4+40*x^3+61*x^2+49*x+46', 'y^2=26*x^6+2*x^5+56*x^4+67*x^3+10*x^2+7*x+10', 'y^2=55*x^6+18*x^5+23*x^4+27*x^3+39*x^2+3*x+15', 'y^2=16*x^6+10*x^5+4*x^4+15*x^3+30*x^2+9*x+40', 'y^2=25*x^6+66*x^5+54*x^4+57*x^3+x^2+72*x+17', 'y^2=12*x^6+53*x^5+17*x^4+18*x^3+35*x^2+71*x+56', 'y^2=13*x^6+34*x^5+11*x^4+68*x^3+45*x^2+65*x+72', 'y^2=31*x^6+13*x^5+50*x^4+54*x^3+53*x^2+5*x+48', 'y^2=67*x^6+32*x^5+21*x^4+16*x^3+10*x^2+40*x+26', 'y^2=19*x^6+39*x^5+20*x^4+18*x^3+64*x^2+33*x+64', 'y^2=29*x^6+34*x^5+16*x^4+19*x^3+66*x^2+18*x+22', 'y^2=27*x^6+40*x^5+56*x^4+14*x^3+23*x^2+46*x+40', 'y^2=41*x^6+69*x^5+30*x^4+50*x^3+62*x^2+26*x+60', 'y^2=4*x^6+4*x^5+69*x^4+43*x^3+40*x^2+60*x+13', 'y^2=64*x^6+24*x^5+60*x^4+58*x^3+54*x^2+36*x+7', 'y^2=70*x^6+17*x^5+24*x^4+3*x^3+44*x^2+25*x+34', 'y^2=43*x^6+26*x^5+62*x^4+x^3+38*x^2+28*x+40', 'y^2=48*x^6+38*x^5+23*x^4+58*x^3+40*x^2+38*x+67', 'y^2=61*x^6+50*x^5+43*x^4+x^3+21*x^2+51*x+23', 'y^2=54*x^6+34*x^5+11*x^4+20*x^3+28*x^2+37*x+63', 'y^2=18*x^6+32*x^5+68*x^4+39*x^3+44*x^2+64*x+50', 'y^2=23*x^6+14*x^5+32*x^4+72*x^3+32*x^2+14*x+23', 'y^2=72*x^6+59*x^5+18*x^4+22*x^3+24*x^2+67*x+34', 'y^2=9*x^6+32*x^5+29*x^4+26*x^3+8*x^2+61*x+67', 'y^2=49*x^6+9*x^5+71*x^4+11*x^3+10*x^2+10*x+1', 'y^2=54*x^6+8*x^5+56*x^4+19*x^3+3*x^2+59*x+29', 'y^2=41*x^6+3*x^5+57*x^4+25*x^3+62*x^2+26*x+6', 'y^2=31*x^6+36*x^5+55*x^4+72*x^3+9*x^2+33*x+54', 'y^2=32*x^6+60*x^5+71*x^4+20*x^3+36*x^2+47*x+58', 'y^2=9*x^6+15*x^5+46*x^4+20*x^3+53*x^2+36*x+27', 'y^2=2*x^6+16*x^5+11*x^4+54*x^3+6*x^2+55*x+6', 'y^2=14*x^6+33*x^5+11*x^4+11*x^3+71*x^2+8*x+23', 'y^2=11*x^6+32*x^5+4*x^4+68*x^3+68*x^2+38*x+43', 'y^2=10*x^6+24*x^5+71*x^4+36*x^3+39*x^2+24*x+12', 'y^2=28*x^6+70*x^5+42*x^4+30*x^3+x+55', 'y^2=24*x^6+58*x^5+8*x^4+19*x^3+61*x^2+24*x+4', 'y^2=59*x^6+64*x^5+31*x^4+70*x^3+3*x^2+16', 'y^2=6*x^6+28*x^5+53*x^4+4*x^3+28*x^2+66*x+65', 'y^2=4*x^6+53*x^5+56*x^4+72*x^3+2*x^2+10*x+49', 'y^2=44*x^6+65*x^5+37*x^4+67*x^3+23*x^2+10*x+49', 'y^2=29*x^5+68*x^4+38*x^3+24*x^2+17*x+3', 'y^2=16*x^6+8*x^5+69*x^4+24*x^3+15*x^2+41*x+12', 'y^2=52*x^6+19*x^5+39*x^4+13*x^3+53*x^2+5*x+62', 'y^2=29*x^6+53*x^5+7*x^4+59*x^3+41*x^2+32*x+65', 'y^2=70*x^6+20*x^5+55*x^4+2*x^3+45*x^2+44*x+69', 'y^2=48*x^6+59*x^5+61*x^4+51*x^3+30*x^2+62*x+8', 'y^2=36*x^6+6*x^5+36*x^4+56*x^3+30*x^2+5*x+57', 'y^2=14*x^6+49*x^5+19*x^4+40*x^3+39*x^2+5*x+32', 'y^2=50*x^6+25*x^5+30*x^4+11*x^3+58*x^2+52*x+42', 'y^2=x^6+63*x^5+28*x^4+59*x^3+53*x^2+18*x+10', 'y^2=5*x^6+45*x^5+47*x^4+14*x^3+10*x^2+46*x+8', 'y^2=61*x^6+60*x^5+8*x^4+x^3+37*x^2+12*x+22', 'y^2=68*x^6+34*x^5+51*x^4+12*x^3+48*x^2+16*x+50', 'y^2=64*x^6+35*x^5+46*x^4+65*x^3+24*x^2+61*x+64', 'y^2=12*x^6+55*x^5+60*x^4+13*x^3+36*x^2+15*x+39', 'y^2=35*x^6+63*x^5+4*x^4+7*x^3+34*x^2+30*x+46', 'y^2=69*x^6+2*x^5+32*x^4+11*x^3+32*x^2+45*x+52', 'y^2=13*x^6+21*x^5+22*x^4+33*x^3+25*x^2+58*x+18', 'y^2=31*x^6+18*x^5+48*x^4+29*x^3+12*x^2+22*x+35', 'y^2=49*x^6+20*x^5+40*x^4+35*x^3+61*x^2+27*x+32', 'y^2=24*x^6+11*x^5+66*x^4+44*x^3+5*x^2+31*x+19', 'y^2=6*x^6+23*x^4+35*x^3+48*x^2+31*x+8', 'y^2=55*x^6+64*x^5+71*x^4+59*x^3+4*x^2+29*x+55', 'y^2=2*x^6+65*x^5+29*x^4+3*x^3+65*x^2+55*x+18', 'y^2=64*x^6+16*x^5+17*x^4+31*x^3+17*x^2+16*x+64', 'y^2=45*x^6+2*x^5+51*x^4+67*x^3+66*x^2+53*x+69', 'y^2=20*x^6+28*x^5+64*x^4+31*x^3+47*x^2+43*x+41', 'y^2=40*x^6+25*x^5+5*x^4+35*x^3+49*x^2+72*x+14', 'y^2=69*x^6+59*x^5+15*x^4+66*x^3+31*x^2+70*x+10', 'y^2=45*x^6+64*x^5+70*x^4+57*x^3+22*x^2+33*x+40', 'y^2=60*x^6+9*x^5+60*x^4+20*x^3+44*x^2+69*x+13', 'y^2=44*x^6+50*x^5+16*x^4+13*x^3+5*x^2+72*x+56', 'y^2=37*x^6+48*x^5+31*x^4+22*x^3+39*x^2+16*x+72', 'y^2=5*x^6+68*x^5+41*x^4+20*x^3+13*x^2+58*x+64', 'y^2=14*x^6+2*x^5+38*x^4+60*x^3+x^2+9*x+42', 'y^2=33*x^6+11*x^5+41*x^4+27*x^3+53*x^2+59*x+41', 'y^2=45*x^6+16*x^5+70*x^4+67*x^3+40*x^2+24', 'y^2=49*x^6+28*x^5+48*x^4+19*x^3+4*x^2+62*x+54', 'y^2=69*x^6+41*x^5+51*x^4+34*x^3+44*x^2+15*x', 'y^2=5*x^6+38*x^5+34*x^4+65*x^3+x^2+46*x+39', 'y^2=61*x^6+60*x^5+37*x^4+29*x^3+71*x^2+26*x+28', 'y^2=49*x^6+68*x^5+41*x^4+60*x^3+3*x^2+45*x+61', 'y^2=52*x^6+52*x^5+11*x^4+49*x^3+11*x^2+52*x+52', 'y^2=18*x^6+72*x^5+55*x^4+12*x^3+27*x^2+22*x+11', 'y^2=41*x^6+45*x^5+70*x^4+11*x^3+51*x^2+48*x+26', 'y^2=58*x^6+55*x^5+20*x^4+11*x^3+3*x^2+52*x+31', 'y^2=38*x^6+43*x^5+12*x^4+18*x^3+48*x^2+14*x+9', 'y^2=15*x^6+58*x^5+15*x^4+7*x^3+18*x^2+69*x+32', 'y^2=10*x^6+53*x^5+30*x^4+20*x^3+11*x^2+24*x+35', 'y^2=49*x^6+12*x^5+44*x^4+36*x^3+15*x^2+17*x+39', 'y^2=36*x^6+10*x^5+11*x^4+56*x^3+12*x^2+19*x+3', 'y^2=65*x^6+32*x^5+52*x^4+3*x^3+41*x^2+18*x+35', 'y^2=32*x^6+72*x^5+54*x^4+38*x^3+34*x^2+3*x+41', 'y^2=24*x^6+10*x^5+8*x^4+42*x^3+14*x^2+23*x', 'y^2=27*x^6+60*x^5+6*x^4+72*x^3+70*x^2+63*x+71', 'y^2=35*x^6+17*x^5+40*x^4+42*x^3+42*x^2+59*x+50', 'y^2=61*x^6+18*x^5+3*x^4+63*x^3+15*x^2+33*x+35', 'y^2=2*x^6+68*x^5+20*x^4+25*x^3+28*x+2', 'y^2=3*x^6+34*x^5+39*x^4+62*x^3+55*x^2+18*x+55', 'y^2=65*x^6+25*x^5+62*x^4+38*x^3+62*x^2+25*x+65', 'y^2=56*x^6+19*x^5+11*x^4+22*x^3+8*x^2+13*x+27', 'y^2=71*x^6+61*x^5+51*x^4+39*x^3+13*x^2+49*x+17', 'y^2=8*x^6+51*x^5+50*x^4+57*x^3+25*x+63', 'y^2=16*x^6+66*x^5+23*x^4+16*x^3+50*x^2+72*x+52', 'y^2=13*x^6+12*x^5+47*x^4+60*x^3+65*x^2+13*x+8', 'y^2=39*x^6+23*x^5+39*x^4+66*x^3+15*x^2+21*x+17', 'y^2=48*x^6+67*x^5+4*x^3+58*x^2+17*x+25', 'y^2=11*x^6+60*x^5+54*x^4+25*x^3+46*x^2+19*x+2', 'y^2=55*x^6+28*x^5+61*x^4+64*x^3+5*x^2+9*x+16', 'y^2=x^6+40*x^5+41*x^4+8*x^3+57*x^2+72*x+49', 'y^2=55*x^6+51*x^5+13*x^4+5*x^3+14*x^2+22*x+61', 'y^2=54*x^6+8*x^5+35*x^4+25*x^3+65*x^2+8*x+14', 'y^2=41*x^6+10*x^5+38*x^4+4*x^3+2*x^2+3*x+57', 'y^2=7*x^6+13*x^5+7*x^4+15*x^3+7*x^2+38*x+54', 'y^2=20*x^6+10*x^5+29*x^4+17*x^3+29*x^2+10*x+20', 'y^2=62*x^6+67*x^5+44*x^4+32*x^3+39*x^2+44*x+48', 'y^2=19*x^6+8*x^5+20*x^4+55*x^3+10*x^2+2*x+48', 'y^2=7*x^6+29*x^5+10*x^4+36*x^3+34*x+9', 'y^2=33*x^6+44*x^5+37*x^4+15*x^3+47*x^2+27*x+52', 'y^2=20*x^6+x^5+60*x^4+26*x^3+33*x^2+41*x+13', 'y^2=55*x^6+24*x^5+7*x^4+22*x^3+54*x^2+12*x+38', 'y^2=57*x^6+31*x^5+67*x^4+38*x^3+64*x^2+64*x+44', 'y^2=58*x^6+13*x^5+49*x^4+47*x^3+23*x^2+69*x+6', 'y^2=56*x^6+36*x^5+9*x^4+35*x^3+29*x^2+20*x+8', 'y^2=8*x^6+36*x^5+37*x^4+13*x^2+62*x+1', 'y^2=49*x^6+17*x^5+48*x^4+44*x^3+58*x^2+32*x+68', 'y^2=19*x^6+5*x^5+63*x^4+45*x^3+9*x^2+27*x+2', 'y^2=19*x^6+2*x^5+66*x^4+14*x^3+30*x^2+72*x+61', 'y^2=60*x^6+32*x^5+24*x^4+58*x^3+33*x^2+33*x+49', 'y^2=16*x^5+37*x^4+36*x^3+x^2+20*x+22', 'y^2=4*x^6+62*x^5+x^4+18*x^3+43*x^2+65*x+47', 'y^2=69*x^6+51*x^5+43*x^4+30*x^3+40*x^2+27*x+55', 'y^2=15*x^6+36*x^5+38*x^4+29*x^3+12*x^2+9*x+30', 'y^2=10*x^6+52*x^5+40*x^4+25*x^3+58*x^2+21*x+22', 'y^2=67*x^6+46*x^5+62*x^4+16*x^3+69*x^2+2*x+49', 'y^2=62*x^6+31*x^5+23*x^4+9*x^3+38*x^2+61*x+10'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 40, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.8.1', '2.0.4.1'], 'geometric_splitting_field': '4.0.256.1', 'geometric_splitting_polynomials': [[1, 0, 0, 0, 1]], 'group_structure_count': 6, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 240, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 240, 'label': '2.73.s_gw', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2, 3], 'number_fields': ['2.0.8.1', '2.0.4.1'], 'p': 73, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 18, 178, 1314, 5329], 'poly_str': '1 18 178 1314 5329 ', 'primitive_models': [], 'q': 73, 'real_poly': [1, 18, 32], 'simple_distinct': ['1.73.c', '1.73.q'], 'simple_factors': ['1.73.cA', '1.73.qA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,-3*F+3', '3,F-8', '7,3*F^2+9*F-18*V-20', '3,V+2'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.256.1', 'splitting_polynomials': [[1, 0, 0, 0, 1]], 'twist_count': 8, 'twists': [['2.73.as_gw', '2.5329.bg_ahiw', 2], ['2.73.ao_ek', '2.5329.bg_ahiw', 2], ['2.73.o_ek', '2.5329.bg_ahiw', 2], ['2.73.ai_gc', '2.28398241.aqfc_fyhkbm', 4], ['2.73.ae_fe', '2.28398241.aqfc_fyhkbm', 4], ['2.73.e_fe', '2.28398241.aqfc_fyhkbm', 4], ['2.73.i_gc', '2.28398241.aqfc_fyhkbm', 4]], 'weak_equivalence_count': 48, 'zfv_index': 3528, 'zfv_index_factorization': [[2, 3], [3, 2], [7, 2]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 10368, 'zfv_singular_count': 8, 'zfv_singular_primes': ['2,-3*F+3', '3,F-8', '7,3*F^2+9*F-18*V-20', '3,V+2']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 83314
{'base_label': '2.73.s_gw', 'extension_degree': 1, 'extension_label': '1.73.c', 'multiplicity': 1}
-
id: 83315
{'base_label': '2.73.s_gw', 'extension_degree': 1, 'extension_label': '1.73.q', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.73.c', 'galois_group': '2T1', 'places': [['61', '1'], ['12', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.4.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.73.q', 'galois_group': '2T1', 'places': [['27', '1'], ['46', '1']]}