Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 23 x^{2} )( 1 - 2 x + 23 x^{2} )$ |
| $1 - 10 x + 62 x^{2} - 230 x^{3} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.186011988595$, $\pm0.433137181604$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $20$ |
| Isomorphism classes: | 80 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $352$ | $292864$ | $150133984$ | $78318862336$ | $41430042276832$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $14$ | $554$ | $12338$ | $279870$ | $6436894$ | $148066058$ | $3405009538$ | $78311067454$ | $1801148717294$ | $41426493059114$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=16 x^6+19 x^5+9 x^4+14 x^3+16 x^2+22 x+2$
- $y^2=6 x^6+19 x^5+14 x^4+x^3+18 x^2+7 x+20$
- $y^2=5 x^6+10 x^5+10 x^4+17 x^3+5 x^2+14 x+15$
- $y^2=3 x^6+11 x^5+x^4+16 x^3+20 x^2+4 x+6$
- $y^2=19 x^6+4 x^5+20 x^4+5 x^3+5 x^2+6 x+4$
- $y^2=20 x^6+3 x^5+10 x^4+18 x^3+19 x^2+4 x$
- $y^2=20 x^6+17 x^5+19 x^4+8 x^3+20 x+18$
- $y^2=7 x^6+8 x^5+17 x^4+7 x^3+13 x^2+20 x+11$
- $y^2=19 x^6+22 x^5+15 x^4+15 x^3+12 x^2+17 x+7$
- $y^2=10 x^6+2 x^5+15 x^4+20 x^3+15 x^2+2 x+10$
- $y^2=8 x^6+17 x^5+10 x^4+16 x^3+4 x^2+16 x+18$
- $y^2=19 x^6+14 x^5+14 x^4+9 x^3+14 x^2+5 x+11$
- $y^2=20 x^6+14 x^5+10 x^4+19 x^3+10 x^2+14 x+20$
- $y^2=21 x^6+13 x^5+6 x^4+9 x^2+13 x$
- $y^2=5 x^6+19 x^5+17 x^4+3 x^3+17 x^2+13 x+21$
- $y^2=4 x^6+17 x^4+x^3+4 x^2+4 x+21$
- $y^2=15 x^6+6 x^5+9 x^4+18 x^3+16 x^2+16 x+5$
- $y^2=17 x^6+21 x^5+4 x^4+10 x^3+12 x^2+2 x+4$
- $y^2=19 x^6+5 x^5+x^4+19 x^2+15 x+14$
- $y^2=14 x^6+18 x^5+17 x^4+14 x^3+13 x^2+x+22$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.ai $\times$ 1.23.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.ag_be | $2$ | (not in LMFDB) |
| 2.23.g_be | $2$ | (not in LMFDB) |
| 2.23.k_ck | $2$ | (not in LMFDB) |